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Abstract: Coqelations are often falsely interpreted as measures ofconsistency at the individ­
uallevel. This misinterpretation is a special case ofthe general tendency among psychologists 
to confuse relations obtained' within aggregates of individuals with relations within individ­

) uals. In the case of correlations, this tendency is particularly strong because of a lack of 
measures that tap the consistency between interindividual differences at the level ofthe single 
case. A coefficient of individual consistency is proposed which is consistent with the correla­
tion at the aggregate level insofar as its mean is identical with the correlation. Statistical 
properties of the coefficient are delineated and illustrated with Monte-Carlo studies for 
bivariate normal distributions. A transformation is suggested that normalizes the skewed 
distribution of the individual stabilities for these distributions. Some applications of these 
coefficiepts are iIlustrated with data on the longitudinal stability ofchildren's social behavior. 
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1. Introduction 

Since the times ofWiUiam Stern (1911) it is common practice in differen­
tial psychology to measure linear relations among intetindividual differ­
ences bycorrelations(e.g., their consistency across nieasures, time, or 
situations). These correlations are measures of consistency at the level of 
aggregates of individuals. Thus, they may be considered to tap the tnean 
individual consistency 0/ interindividual dif/erences in a sampie of persons. 
In fact, the correlation rXY between X and Y is a linear function of the 
mean squared differences between the z-scores of X, Y: . 

1
-'L:(zx- zy)2=2(1 rXY)' (1)
n 

*) I am indebted to RolfSteyer, University ofTrier, F.R.G., Heinrich Wottawa, Univer­
sity of Bochum, F.R.G., and an anonymous reviewer for their suggestions conceming 
some of the proofs.· . 

Author's address: Dr. Jens Asendorpf, Max-Planck-Institut für psychologische Forschung, 
Leopoldstraße 24, D-8000 München 40. 
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Hence the squared z-score difference of a person teils us something 
about the person's consistency in the sampie : the smaller these differenccs 
are, the higher is the person's consistency between X and Y. Differences 
between the individual consistencies of persons in the sampie accordingly 
inform us about the differential consistency in the sampie; for example, the 
variance of the individual consistencies is a measure of the mean differen­
tial consistency in the sampie. 

Because the correlation is essentially the mean of some index of individ­
ual consistency, it shares aH the problems that affect measures of aggre­
gates such as means or variances. Repeatedly, but without apparent suc­
cess, it has been pointedout that it is not possible to infer relations at the 
individual level from relations found at the level of aggregates if the 
functional homogeneity ofthe individuals is not guaranteed (cf., e.g, Lewin, 
1931; Bakan, 1954; Thorngate, 1986). 

To choose a popular example, a highly significant mean improvement 
of emotional adjustment after psychotherapy may be perfectly compatible 
with an actual non-improvement of the majority of the c1ients studied: a 
few improved very much, thereby dominating the mean, whereas most 
clients did not improve. Because the subjects lacked homogeneity of im­
provement, the result obtained for the aggregate level cannot be general­
ized to the individual level. 

The same reasoning applies to correlations as weJl. This has less often 
been recognized. Valsiner (1986) showed that undergraduates in psycholo­
gy, doctors of psychology, and the authors of Child Development have a 
strong tendency to interpret correlational findings as if they would tell us 
something about relations at the individual level. For example, a one-year 
consistency of 040 found for interindividual differences in the observed 
rate of shy behavior during free-play in preschool would be typicaHy 
interpreted as follows: "(The) children showed a medium consistency of 
(interindividual differences in) shyness over a one-year period". As Valsin­
er (1986) has demonstrated, such an interpretation is ambiguous at best; 
most would misunderstand it by assuming that nearly aH, or at least the 
majority of children would show a medium consistency of their individual 
rate of shy behavior over the one-year period. 

Again, the subjects of a sampie must be functionally homogeneous in 
regard to their individual consistencies if the size of a correlation in the 
sampie can be generalized to the individuals of the sampie. In the example 
from psychotherapy research, the functional nonhomogeneity of the cH­
ents could be easily detected by inspecting the individual ohange scores. 
What should we look for when we want to examine a bivariate distribution 
for differential consistency?What is the coefficient of indiviqual consistency 
in this case? Surprisingly, there do not seem to exist well-known coeffi­
cients of individual consistency which could be used for this purpose. 



3 Individual Consistency 

Where differential consistency has been studied, the analysis nearly 
always has been restricted again to the aggregate level by applying the 
moderator variable approach introduced by Saunders (1956): the effect of 
a moderator variable on the consistency of the interindividual differences 
in another variable is evaluated within a hierarchical multiple regression 
model. For example, the moderating effect of self-rated consistency in 
some trait on the cross-situational consistency of observed behavioral 
indicators ofthis trait has been studied (cf. Paunonen & Jackson, 1985, for 
a review). 

This approach seems weIl suited for testing hypothesized moderating 
effects ofsome variable on the consistency of interindividual differences in 
another variable. However, before it comes to hypothesis testing, one 
often would like to have a description of differential consistency in the first 
place: the amount ofdifferential consistency in terms of the variance of the 
individual consistencies and their distributional characteristics (e.g., a 
bimodal distribution of the individual consistencies would suggest impor­
tant subgroup differences in consistency). The moderator variable ap­
proach does not provide this descriptive information. On the other hand, 
the individual consistencies can be used to study the moderating effect of 
some variable simply by correlating this variable with the individual con­
sistencies. 

There appears to exist only one approach in the literature to measure 
individual consistencies. Ghiselli proposed to regard the absolute value of 
each individual's residual score in the regression equation 

IY -yl (2) 

as a measure of each person's "individual predictability" and to predict 
. these scores by external variables ("prediction ofpredictability"; Ghiselli, 

1960, 1963). However, this approach did not prove to be very successful, 
mainly because the predictors found were quite specific to the criterion 
variables and could not be cross-validated. For these reasons, Ghiselli's 
approach was not pursued further although some authorities still regard 
it as an interesting one (cf. Wiggins, 1973, chap. 2, and Paunonen & Jack· 
son, 1985, footnote 7). 

Besides this apparent failure of Ghiselli's approach to yield stable re~ 
sults in empirical applications, there seems to be a more fundamental 
problem involved in his approach. GhiseUi chose each person's deviation 
from the regression line as a measure of individual consistency. thus, he 
compared each person's change with the change expected by the "regres­
sion to the mean effect". It is a widespread belief among psychologists that 
the regression to the mean is some kind of" naturallaw" in psychological· 
data sets. As Rogosa, Brandt and Zimowski (1982) and others pointed 
out, this belief is a myth. . 
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A regression to the mean effect may or may not occur depending on the 
variable observed; it is certainly to be expected only if all inconsistency at 
the aggregate level (and hence all differential consistency) were just ran­
dom. If there are psychologically meaningful differences among the indi­
vidual consistencies, differential consistency is not random, and correcting 
for a falsely expected regression to the mean obscures the interpretation 
of the differential consistency which remains. It is mainly for this reason 
why I do not find Ghiselli's approach viable. Another reason is that 
absolute deviation scores are not consistent with the mean, the variance, 
and the correlation (they are consistent with the median; cf. Hays, 1981, 
p. 164-165). 

In what folIows, I will propose a coefficient of individual consistency tJ 
that allows an analysis of the consistency of interindividual differences at 
the level of individual subjects. Because the coefficient is consistent with 
the correlation at the aggregate level, it makes the notion explicit that the 
correlation is essentially the sampie mean of individual consistency scores. 
More importantly, the coefficient provides information beyond that 
mean, Le., beyond the correlation: distributional characteristics of the 
individual consistencies, such as their variance, or a possible multimodal­
ity of the distribution of these consistencies, which would suggest that 
subgroups with different mean consistency can be distinguished. 

2. Method 

2.1 Desired properties o[ individual consistencies 

A coefficient of individual consistency should have the following four 
properties. First, it should be invariant in linear transformations of the &') 
two variables to be compared, " i.e. it should be possible to define the • 
coefficient solely by the z-transforms ofthe two variables. Since thecoef­
ficient should be consistent with the correlation, this assumption is neces­
sary. " 

Second, the coefficient should be a stricdy decreasing fUl1ction of the 
absolute z-score-difference of the two variables to b~<iqmpared for consis­
tency. Thus, the individual consistency of a person should,be at maximum " 
when the person has the same Z-SCOre in both vanables, and it should 
become smaller, as the absolute difference between,~he two z-scores in~J 
creases. This makes sense when the consistency of the scores of a person 
is defined at the individual level. 

Third, the coefficient of individual consistency should be a linear fun,a~ " 
tion of the squared differences of the z-scores of the two variables. Thj~" 
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assumption makes the coefficient commensurate with variance and corre­
lation, which also depend upon squared differences (and not absolute 
differences which are consistent with the median; cf. Hays, 1981, p. 164­
165). 

Fourth, the sampie (or the population) mean of the coefficient of indi­
vidual consistency should be identical with the correlation. Since the third 
proposition includes the first two, it suffices to consider only the third and 
the fourth postulate. 

2.2 Individual consistency as a randorn variable 

In this section, individual consistency is introduced at the most general 
level possible as a random variable which is defined by any two random 
variables X, Y on the same probability space 0 which have existing 
moments of degree 1-4. This very general approach makes it easier to 
prove various properties of the individual consistencies. For a better un­
derstanding of the meaning of the following Theorems for psychological 
applications, one may conceive the probability space 0 to consist of a 
finite population of persons. Two random variables X, Y assign to each 
person p latent scores X(p), Y(p) with a certain probability; then, the 
expectations of X, Y exist and are the population means of X, Y. 

The proofs of the following Theorems repeatedly make use of certain 
well-known properties of Z-transformed variables. These properties are 
summarized in the following Lemma. 

Lemma. Let X, Y: 0 - .IR be random variables with existing expectations 
E(X), E(Y), variances a2 (X), a 2 (y), third moments E(X?), E(y3), corre­
lation eXY' and Z-transformation Zx, Zy (e.g., Zx = (X - E(X»/a(X». 
Then the following propositions hold (cf., e.g., Hays, 1981): 

(1) E(Zx) = O. 

(2) E(Zi) = a2 (X) = 1. 

(3) E(Z~) = 0 if Xis symmetrically distributed. 

(4) E(ZXZy) = eXY 

(5) E«Zx - Zy)2) = a2(Zx - Zy)= 2(1 - eXY)' 

(6) The linear regression equation Zy = eXYZX + e holds where 
e: 0: -.IR is the error variablewith E(e) = 0 and E(Zxe) =E(Zye) 
= 1 - eiy and E(e2

) = 1 - e2XY' If Zy is not nonlinearly stochasti­
cally dependent upon Zx, i.e. if E(ZyIZx) = eXY Zx for the conditional 
expectation of Zy under Zx, then E(Zie) = E(Zxe2) = O. 
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The first Theorem proves that there is one and only one variable satis­
fying the four desired properties for individual consistency coefficients 
outlined in the preceding section. 

Theorem 1. Let X, Y: Q ~ 1R be two random variables with correlation 
eXY' Then there is one and only one random variable Ixy which satisfies 
the following three conditions: 

6 

(1) Ixy is independent of eXY' 

(2) IX)!' is a linear function of (Zx _ Zy)2. 

(3) E(lxy) = eXY' 

It is Ixy = 1 - (Zx ~ Zy)2 ("individual consistency of X, Y"). 

Proof E(Ixy) = 1 ~. E«Zx - Zy)2) = 1 - (1 - exy) = eXY according 

to Lemma (5). Let JXY : Q ~ 1R be a random variable satisfying (1) 
-(3). Hence there exist a, bE 1R, b =1= 0, with eXY = E(Jxy) 
= E(a + b(Zx - Zy)2) = a + 2b(1 - eXY) according to Lemma (5). For 
eXY = 1 it follows that 1 = a; thus, for eXY = 0 it follows that 0 = 1 + 2b, 

1 
i.e., b = 2:' Hence JXY = lxv· 

The foUowing Theorem proofs some basic properties of the individual 
consistency I xy which hold without any particular assumption about X, Y. 

Theorem 2. Let X, Y: Q ~ 1R be two random variables with correlation 
eXY and individual consistency lxv. Then the following propositions hold: 

(1) For all pE Q, 

(a) Ixy(p) ~ 1. 
(b) lxy(p) = 1 if and only if Zx(p) = Zy(p). 
(c) IXY(p) = 0 if and only if IZx(p) - Zy(p)1 = 112. 

(2) u2(Ixy) = ~. E«Zx - Z,,)4) - (1 - C!Xy)2. 

1 
(3) eXlxv = - 2u{IXY) . E(Zx(Zx - Zy)2) for eXY =1= 1. 

(4) With decreasing correlation eXY' the individual consistency Ixy shows 
an increasing quadratic stochastic dependeilce upon X. For C!XY = ...;.. 1 

it is lxy = 1 - 2(Zx _ ~e)2. 
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Proof 

(1) is trivial. 

(2) a 2(Ixy) = E(I~y) - E(IXy)2 

= E((1 _(Zx ~ ;?:~)2)2) - e~y 

= E(1 - (Zx - Zy)2 + ~~~ Zy)4) - e~y 
1 

= 	1 - 2(1 - eXY) + 4' E«Zx - Zy)4) - eiy 

according to Lemma (5) 

1 


= 4' E«Zx - Zy)4) - (1 - 2exy + eiy) 

= ~ .E«Zx - Zyt) - (1 - eXy)2. 

(3) For eXY::f. 1, 
1 

eXlxy = a(IXY) . COV{Zx, Ixy) for the covariance COV 

= 	_._1_. COV(Z 1 _ (Zx - Zy)2) 

a(Ixy) x' 2 


1 1 
= - a(I

xy
) ':2' COV{Zx, (Zx - Zy)2) 

= - 2a/l ) . [E(Zx(Zx - Zy)2) -'- E(Zx)' E«Zx - Zy)2)]
xy

1. 	 2 = - 2a(I ) . E(Zx(Zx - Zy) )~
xy

(4) According to Lemma (6), 
(Zx - Zy)2 1 2

Ixy = 1 - ---- = 1 - - . (Zx - exyZx - e) 
. 2 2 

= 1 -:2'1.
«1 ~ eXY) Zx - e)

2 

1 ( )2 2 2' .. = 1 - 2' ( 1 - eXY 	 Zx - 2(1 - eXY) Zxe + e ). 

2For eXY = 1 it is IXY = 1 -l e . For exy < 1, (1 - eh) > 0, i.e. Ixy 

is quadratically stochastically dependerit uponX. Since for i?1 < e2 it 
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follows that (1 - (l!)2 > (1 (2)2, this dependence increases with de­
creasing QXY' 

8 

= 1 _ (Zx + Zx e)2 = 1For QXY = 1, 1Xy 2 

Theorem 2 states that there may be a nonzero correlation between X, Y 
and their individual consistency. The next Theorem provides sufficient 
conditions for this correlation to be zero: 

Theorem 3. Let X, Y: Q ~ R be random variables with correlation 
eXY =!= 1 and individual consistency Ixy • If Y is not nonlinearly stochasti­
eally dependent upon X, eXlxy is a funetion of the asymmetry of X: 

(1 eXy)2 E(Z3)
eXlxy = - 2q(I )' x . xy

If, in addition, X is symmetrie, then eXIXY = O. 

Proof. If Y is not nonlinearly stoehastieally dependent upon X, the same 
is true for Zy, Zx. From Lemma (6) it follows that 

E(Zx(Zx - Zy)2) = E(Z~) 2E(ZiZy) + E(ZxZf) 
E(Z~) - 2E(Z~«?xyZX + e» + E(Zx(exyZX + e)2) 

= E(Z~) 2eXY E(Z~) + e~y E(Z~) 
= E(Z~)(l - 2exy + eh) 
= E(Z~ (1 - eXy)2. 

Applying this equation to Theorem 2 (3) yields the proof. If X is sym­
metrie, then E(Z~) = 0 according to Lemma (3), henee eXI = O.Xy 

If X, Y are bivariate normally distributed, they fulfill both eonditions 
stated in Theorem 3. Furthermore, the distribution of the individual con­
sistency has a well-known form in this ease, and its varianee ean be O',F" 
expressed very simply: 

Theorem 4. Let X, Y: Q ~ R be bivariate normally distributed (andorn 
variables with correlation (lXY and individual eonsisteney lxv. Then the 
following propositions hold: 

(1) 	eXlxy = O. 
2(2) 	For (lXY =1= 1, Ixy is a linear funetion of a random variable with ax ­

distribution with one degree of freedom: 

lxy = 1 - (1 - Oiy)' Xrl)' 

(3) 	q2(lxy) = 2(1 - eXy)2. 

(4) Ixy is strongly skewed to the left with skewness V8 and',exeess 12. 
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Proof 
(1) 	 Since X, Y have a bivariate normal distribution, they are symmetrical­

ly distributed and show no nonlinear stochastic dependence (cf., e.g., 
Hays, 1981, p. 463). According to Theorem 3, it is QXlxy = O. 

(2) 	Since X, Y are bivariate normally distributed, their difference Zx - Zy 
is normally distributed (cf., e.g., Rao, 1965, p. 438). Since 
E(Zx Zy) = 0 and E«Zx Zy)2) = 2(1 QXY) according to Lem­

Z 	 -Z 
ma 	(~), the random variable 1/20 _ Q:y) has a standard normal 

distribution. Since the square of this variable has a Xftrdistribution 

,A" b d fi . . (Zx - Zy)2 2 
., Y e IDltlOn, 2(1 _ eXY) = X(1)' 

(3) 	The variance of xl1) is 2. Thus, a2(Ixy) = (1 QXy)2. 2. 

(4) The skewness of xft) is VS, its excess is 12 (cf., e.g., Abramo­
witz & Stegun, 1972). Since the skewness of a variable is invariant 
against linear transformations (except for sign change), and the excess 
is fully invariant against linear transformations, proposition (4) fo1­
lows directly from the properties of the Xl1)-distribution. 

Theorem 4 points to a problem of the individual consistency scores as 
defined in this section. If the variables X, Y perfectly meet the require­
ments for the correlation as a measure of stochastic relation; the individual 
consistencies are strongly skewed. Thus, it would be misleading to apply 
linear an,llyses to them - for example, computing difference scores or 
variancesin order to analyze the data fo,r differential stability. 

Therefore, it seems necessary to transform the individual consistencies 
in such a way as to obtain a fairly, normal distribution. Tbe following 
conjectureproposes a solution to this problem: 

Conjecture. Let X, Y: Q -4 IR. be bivariate normally distributed random 
variables and Ixy their individual consistency. Then the fol1owing trans­
formation T: IR. -4 IR. leads to a fairly normal distributionofthe individual 
consistencies: 

_1 . In [1.001 +, IX,yJ for 0 ~ Ixy(P) ~ 1 (peQ)
2 1.001 - Ixy

Tlxy = 
l~[ 1 ] forlxy(p)<O.

1 - lxy· 

It is T(O)' 0 and T(1) = 3.80. 

Remark. Tbe transformation T is nearly identical with Fisher's Z-transfor~ 
mation for correlations ifIxy(p) ~ 0, except for the constant 1.001 instead . 
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of 1. This slight deviation is necessary because IXY(p) may equal one in 
wh ich case Fisher's Z is not defined. If Ixy(p) < 0, T must be defined 
differently because, contrary to correlations, IXY is not distributed sym­
metrically around zero. 

While simple computation suffices to proofthe formulas for T(O), T(l), 
an algebraic proof of the rest of the conjecture is not easy. lnstead, the 
normalizing property of the transformation T for bivariate normal distri­
butions will be demonstrated in the following section with Monte-Carlo 
studies. 

i! 
2.3. Monte-Carlo studies 0/ individual consistencies 

If X, Z are stochastically independent standard normal distributions, the 
variable 

Ver) = rX + Vi=? Z (3) 

is also a standard normal distribution. Furthermore, for each fixed value 
of X or Z, the respective conditional distribution is normally distributed. 
Thus, X, Y(r) are bivariate normally distributed with correlation r. For a 
given - 1 ~ r ~ 1, this allows to generate approximately bivariate normal 
distributions with correlation r by combining two independently generat­
ed, approximately normally distributed, z-transformed sequences of ran­
dom numbers. 

For each level of r = 0.8 - k· 0.2 (k = 0, ... ,9), 100 different 
pairs of approximately standard bivariate normal distributions 
Xi> Y(r)j (i = 1, ... ,100) of 100random numbers with correlation r were 
generated with the functidn RANNOR of the Statistical Analysis System 
(SAS). For each pair, various descriptive indices (including the individual 
consistencies IXY between X, Y (r» were computed as weIl as the correla­
tion between X and Ixy and the transformed scores TIXY ' Each of these 
descriptive indices was then averaged over the 100 pairs of variables· 
Xj' Y(r)j for each level ofr. Table 1 contains the results ofthese analyses. 

Figure 1 shows the distribution ofthe individual consistencies as weil as 
the distribution of their transformation for the pooled 100 Monte-Carlo 
studies (Le., 10000 values) for five different levels of correlation r. 

The effectiveness of the transformation T in normalizing the distribu­
tion of the individual consistencies can be seen from Figure 2. The more 
the individual consistencies approach the maximum score ofone, the more 
they are differentiated by the transformation T. On the other hand, the 
more the individual consistencies are negative; the more they are damp­
ened by T. This lastproperty of T has the advantage that outliers in the . 
distribution of the individual consistencies are made less extreme. 
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Table 1: Descriptive scores for the individual consistencies between bivariate 
nomal distributions with differing correlation (mean of 100 Monte-Carlo studies 
with N = 100 in each case; standard deviations within the 100 studies in brackets) 

Correlation r 

Descriptive score 0.80 0.40 0.00 - 0.40 -0.80 

Mean of IXY(r) 0.80 0.41 0.01 - 0.37 0.80 
(0.01) (0.06) (0.10) (0.15) (0.11 ) 

Std of IXY(r) 0.27 0.82 1.36 1.91 2.53 
(0.04) (0.12) (0.19) (0.29) (0.35) 

e y2' (1 - r) 0.28 0.85 1.41 1.98 2.55 

Skewness of IXY (r) - 2.35 - 2.51 2.38 2.45 - 2.54 
(0.69) (0.68) (0.68) (0.59) (0.82) 

Excess of IXY(r) 7.25 8.21 7.36 7.63 8.66 
(5.63) (5.65) (5.40) (4.66) (7.49) 

Mean of TIXY(r) 1.63 1.00 0~65 0.41 0.21 
(0.06) (0.09) (0.11) (0.11) (0.10) 

Std of TIXY(r) 0.96 1.15 1.27 1.34 1.41 
(0.05) (0.07) (0.06) (0.08) (0.09) 

Skewness of TIxY!r) 0.41 0.25 0.26 0.26 0.29 
(0.17) (0.18) (0.17) (0.15) (0.17) 

Excess of TIXY (r) - 0.37 - 0.19 -0.27 - 0.28 -0.33 
(0.26) (0.32) (0.29) (0.30) (0.26) 

Correlation rX1XY 0.00 0.02 0.01 0.02 0.01 
(0.11 ) (0.11) (0.13) (0.15) (0.15) 

Correlation rxn"y 0.00 0.01 0.02 0.01 0.01 

1_ (0.11 ) (0.09) (0.09) (0.08) (0.07) 

Figures 3 and 4 illustrate the nonlinear stochastic dependence of the 
(transformed) individual consistencies upon X. Figure 3 shows the most 
extreme dependence for rxv = -:- 1. 

Figure 4 demonstrates for - 1 < rxv < 1 that this nonlinear stochastic 
dependence leads to a "hole" in the joint distribution ofX, lxv, or Tlxv , 
respectively, which increases the more negative the correlation rxv be­
comes. 

Figure 4 suggests that for the positive or - at worst - slightly negative 
correlations ofstudies ofconsistency, the nonlinear stochastic dependence 
between X and the individual consistencies or their transformations plays 
a minor role. Only ext~eme inconsistencies are affected insofar as they cau 
only occur for extreme values of X. This relation must hold because 
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r = 0.8 

W­ TW-

Figure J: Individual consistencies (left), and their transformations (fight), for 
bivariate normal distributions with varying correlation. 

Individual 

conslstency 


4 

Figure 2: Dependence of the (transformed) individual consistencies upon the z­
score difference. 
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Figure 3: Perfect, nonlinear relation between initial scores and the (transfonned) 
individual consistencies for rXY = - 1. 

extreme inconsistencies can only be caused by switching from one extreme 
score to the opposite extreme score. 

The increase of nonlinear stochastic dependence between X and the 
individual consistencies with increasingly negative correlations is an exam­
pie of the sensitivity of the individual consistencies to sign changes of the 
variables compared. Note that in regression problems, no such sensitivity 
exists. As a consequence, studies of consistency should always try to score 
the variables compared for consistency in a way that minimizes negative 
correlations among these variables. 

i! 

" 

r = 0.80 
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'" 

r = 0.40 

r = 0.00 

... 

r = - 0.40 

.. 
r = - 0.80 

I. 
Figure 4: Results of the Mqnte~Carlo studies regarding the incr~singly nonlineaE 
stocha.stic dependence betweel} X and the individqalconsistencies (left) and. the 
iransformed individual consistencles (right) for varlous correl8.tions between X, Y 

(each diagram represents 100 studies with N = 100 each). 
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3. Example 

The measurement of individual consistency is now illustrated with a data 
set reflecting the longitudinal stability of children's social competence 
(because in this example the consistency over time is investigated, I prefer 
the term (individual or differential) stability). The data stern from the 
Munieh Longitudinal Study on the Genesis of Individual Competeneies 
(LOGIC, Weinert & Schneider, 1986). 

I:igure 5 presents the scatterplot of the one-year stability of, = 0.40 of 
the observed rate of shy contaet initiations among aU initiations direeted 
to peers during free-play in preschool for 68 children. 

The scatterplot indieates that ehildren's rate of shy behavior showed a 
substantial differential stability. This can be easily seen by comparing their 
scores with the stability fine y= (Sy/sx) (x - mx) + mf' where sx, Sy are 
the standard deviations of X, Y, and mx , my are the means of X, Y (cf. 
Fig. 5). The stability line is identical with the regression line for 'Xy = 1. 

The data presented in Figure 1 are now analyzed in terms of the coeffi­
eients of individual eonsistency. The distributions of the observed rates of 
shy behavior deviate somewhat from normality (for Kolmogorov's test for 
deviation from normality, d = 0.15, p < 0.01, for the first year of observa­
tion; d = 0.08, p < 0.08, for the seeond year). However, as Figure 6 indi­
cates, these deviations are not extreme. 

Figure 6 shows that the distribution of the (untransformed) individual 
eonsistencies Ixy is strongly skewed to the left with mean 0.40, standard 
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Figure 5: One-year stability of interindividual differences in the räte ofshy behav­
ior during coritact initiation attempts at freb-play in preschogl (n = 68): 
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deviation 1.23, minimum 7.49, and maximum 1.00; the distribution of 
the transformed individual consistencies TIXY is fairly nonnal (d = 0.07, 
p 0.15) with mean 1.16, standard deviation 1.31, minimum - 2.14, and 
maximum 3.80. 

Comparing these data with the corresponding ones for bivariate nonnal 
distributions (cf. Table 1) indicates that both standard deviations and the 
mean of the transfonned individual consistencies are somewhat greater 
than to be expected on the basis of a correlation of 0.40. Comparing 
Figures 1 and 6 suggests that this is due to the few children with very low 
or very high individual consistencies. 

Table 2 contains some descriptive scores of the five children marked in 
Figure 5. Table 2 indicates that child no. 5 is extremely inconsistent in the 
rate of shy behavior observed. Tbe other four children have a rate of shy 
behavior more than one standard deviation above the sampie mean for 
both measurement points. Their individual consistencies still vary consid­
erably, from the virtually perfeet consistency of child no. 3 to a consider­
able inconsistency of child no. 1. Thus, the coefficients of individual con­
sistency (particularly the untransfonned scores) are sensitive to differences 
within extreme scores. 

Tbe dependence of the individual consistencies upon the scores of the 
two assessments compared was analyzed by correlating the transfonned 
individual consistencies with these scores (the untransfonned consistencies 
should not be used for these analyses because of their highly skewed 
distribution). A correlation of r = - 0.41 (p < 0.001) was found for the 
first assessment, and one of r = - 0.12 (ns) for the second assessment. 
Thus, the more children were found to be shy during the first observation 
period, the less consistent their rates of shy behavior were over the one­
year period. For a eloser analysis, the scatterplot of the correlation of 
r = - 0.41 was investigated (cf. Figure 7). 

Tbe scatterplot indicates that the negative correlation between the 
scores of the first assessment and the individual consistencies strongly 
depended upon the two children with the lowest consistencies (no. 1 and 
5 from Fig. 1, 7). Exc1uding these two children, the correlation decreases 
to r = - 0.28 (n = 66, p < 0.03). On the other hand, the negative relation 
between the initial scores and the individual consistencies is not just an 
artifact. When the individual consistencies were correlated with nearly 100 
different measures ofthechiIdren's social behavior and cognitive function­
ing obtained during the first and the second year of assessment, a c1earcut 
picture emerged. Only variables tapping children's shyness correlated at 
least r = 10.301 with the individual consistencies for shy contact initiation 
behavior, and an ofthese correlations were negative. Besides observed shy 
contact initiations, the parental rating of children's shyness toward other 
children in the first year of assessment (r = - 0.39), as weil as in the 
second year (r = - 0.36), the teacher rating "shy in the preschool group" 
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Table 2: Descriptive scores of the five children marked in figure five 

Child No. 

Score 2 3 4 5 

z-score of 1st assessment Zl 3.92 2.80 2.78 2.32 2.32 

z-score of 2nd assessment Z2 1.30 1.72 2.50 1.44 -1.77 

IZ l z21 2.62 1.08 0.28 0.88 4.09 

Individual consistency - 2.43 0.42 0.96 0.61 -7.36 

Transformed ind. consistency 1.23 0.45 1.93 0.71 - 2.12 

FREQlJEHCY fREQUENCY 
JO 30 

20 

Rate of shy behavior, 2nd year .Rate of shy behavior, 1st year 
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Figure 6: Distributions of the.observed rates of shy behaVior at 'the two assess- . 
ments and of the (transformed) individual consistencies between these assessments. 

(r = - 0.30), and the mean length of si~ences in children's conversations 
with an adult stranger (f=':'" 0.42) showed substantial negative correla­
tions with the individual consisteQcies (in each case, p < 0.02). 

This correlational patternsupportsthe notion thaHhehigneJ;shyness is . 
among young cbilqren, the less stable it is over time. This result fits with 
th~ <tata of the Harvard .. longitudinal study. on behavioni.l inhibition 
(Reznick et al., 1986). In this study ofexlreme groups of shyand non-my 
children, some of th.e chjldfenJound tobevery shy in the third· year oflife 
became much less shy two years later whereas no single instance of a 
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Figure 7: Scatterplot of thedependence of the transformed individual consisten­
cies upon nie scores of 'the first assessrnent. 

change from low shyness to high shyness was ohseiVed during this two­
year perlod. Thus,the differential consistency of shy behavior observed in 
the present study could be partly explained in a meaningful way byapply­ (ing the propo,sed coefficients of individual consistency. 

4. Discussion andconcllislon 

The exampleil1ust~ates how the proposed coefficients· of individual consis­
tencycaIi be.applied to psychological data sets (cf. Asendorpf, in press:, fot 
other applications to:longitudinal data). The coefficients of individual 
consist~ncy may be also used to' explore the consistfmcy of interlndividuaI . 
differences·in: behavioracross situationsor diff'ererttmeasutes ofthe same 
construct 
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The proposed coefficients of individual consistency fitl a gap in present 
differential methodology by allowing a detailed descriptive analysis of 
differential consistency. Because the transformed individual consistencies 
are less sensitive to outliers than the raw individual consistencies, they 
provide a measure of consistency at the aggregate level which is more 
robust than the correlation (cf. Fig.2 and Asendorpf, in press, for more 
evidence). Finally, the transformed individual consistencies open a new 
approach to studying moderator effects simply by correlating the individ­
ual consistencies with external variables. 

The approach to the measurement of individual consistency presented 
here is based on a parametric approach. Alternatively, a non-parametric 
approach could be chosen by "individualizing" rank-order measures of 
consistency such as Kendall's 'r, Although some information will be lost 
in this case. a non-parametric approach has the advantage of providing 
even more robust measures of (individual) consistency . 

. All in all, the measurement of individual consistency may open new 
avenues for the study ofstability and change in human characteristics, and 
might help making differential psychology more differential than it is 
today. 
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