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Abstract: Correlations are often falsely interpreted as measures of consistency at the individ-
ual level. This misinterpretation is a special case of the general tendency among psychologists
to confuse relations obtained within aggregates of individuals with refations within individ-
) uals. In the case of correlations, this tendency is particularly strong because of a lack of
measures that tap the consistency between interindividual differences at the level of the single
case. A coefficient of individual consistency is proposed which is consistent with the correla-
tion at the aggregate level insofar as its mean is identical with the correlation. Statistical
properties of the coefficient are delineated and illustrated with Monte-Carlo studies for
bivariate normal distributions. A transformation is suggested that normalizes the skewed
distribution of the individual stabilities for these distributions. Some applications of these
coefficients are illustrated with data on the longitudinal stability of children’s social behavior.

Key words: Consistency, stability, correlation, moderator variable

1. Introduction

Since the times of William Stern (1911) it is common practice in differen-
tial psychology to measure linear relations among interindividual differ-
ences by correlations (e.g., their consistency across measures, time, or
situations). These correlations are measures of consistency at the level of
aggregates of individuals. Thus, they may be considered to tap the mean

Y individual consistency of interindividual differences in a sample of persons.

B In fact, the correlation ryy between X and Y is a linear function of the
mean squared differences between the z-scores of X, Y: '

L% - 2 = 200 — 1. 1)

*} 1 am indebted to Rolf Steyer, University of Trier, F.R.G., Heinrich Wottawa, Univer-
sity of Bochum, F.R.G., and an anonymous reviewer for their suggestions concerning
some of the proofs. ‘

- Aurhor ’s address: Dr. Jens Asendorpf, Max-Planck-Institut fiir psychologische Forschung,
Leopoldstraie 24, 1>-8000 Miinchen 40.
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Hence the squared z-score difference of a person tells us something
about the person’s consistency in the sample: the smaller these differences
are, the higher is the person’s consistency between X and Y. Differences
between the individual consistencies of persons in the sample accordingly
inform us about the differential consistency in the sample; for example, the
variance of the individual consistencies is a measure of the mean differen-
tial consistency in the sample.

Because the correlation is essentially the mean of some index of individ-
ual consistency, it shares all the problems that affect measures of aggre-
gates such as means or variances. Repeatedly, but without apparent suc-
cess, it has been pointed out that it is not possible to infer relations at the
individual level from relations found at the level of aggregates if the
Sfunctional homogeneity of the individuals is not guaranteed (cf., e.g, Lewin,
1931, Bakan, 1954; Thorngate, 1986).

To choose a popular example, a highly significant mean improvement
of emotional adjustment after psychotherapy may be perfectly compatible
with an actual non-improvement of the majority of the clients studied: a
few improved very much, thereby dominating the mean, whereas most
clients did not improve. Because the subjects lacked homogeneity of im-
provement, the result obtained for the aggregate level cannot be general-
ized to the individual level.

The same reasoning applies to correlations as well. This has less often
been recognized. Valsiner (1986) showed that undergraduates in psycholo-
gy, doctors of psychology, and the authors of Child Development have a
strong tendency to interpret correlational findings as if they would tell us
something about relations at the individual level. For example, a one-year
consistency of 0.40 found for interindividual differences in the observed
rate of shy behavior during free-play in preschool would be typically
interpreted as follows: “(The) children showed a medium consistency of
(interindividual differences in) shyness over a one-year period”’. As Valsin-
er (1986) has demonstrated, such an interpretation is ambiguous at best;
most would misunderstand it by assuming that nearly all, or at least the
majority of children would show a medium consistency of their individual
rate of shy behavior over the one-year period.

Again, the subjects of a sample must be functionally homogeneous in
regard to their individual consistencies if the size of a correlation in the
sample can be generalized to the individuals of the sample. In the example
from psychotherapy research, the functional nonhomogeneity of the cli-
ents could be easily detected by inspecting the individual change scores.
What should we look for when we want to examine a bivariate distribution
for differential consistency ? What is the coefficient of individual consistency
in this case? Surprisingly, there do not seem to exist well-known coeffi-
cients of individual consistency which could be used for this purpose.

L J




Individual Consistency 3

Where differential consistency has been studied, the analysis nearly
always has been restricted again to the aggregate level by applying the
moderator variable approach introduced by Saunders (1956): the effect of
a moderator variable on the consistency of the interindividual differences
in another variable is evaluated within a hierarchical multiple regression
model. For example, the moderating effect of self-rated consistency in
some trait on the cross-situational consistency of observed behavioral
indicators of this trait has been studied (cf. Paunonen & Jackson, 1985, for
a review).

This approach seems well suited for testing hypothesized moderating
effects of some variable on the consistency of interindividual differences in
another variable. However, before it comes to hypothesis testing, one
often would like to have a description of differential consistency in the first
place: the amount of differential consistency in terms of the variance of the
individual consistencies and their distributional characteristics (e.g., a
bimodal distribution of the individual consistencies would suggest impor-
tant subgroup differences in consistency). The moderator variable ap-
proach does not provide this descriptive information. On the other hand,
the individual consistencies can be used to study the moderating effect of
some variable simply by correlating this variable with the individual con-
sistencies.

There appears to exist only one approach in the literature to measure
individual consistencies. Ghiselli proposed to regard the absolute value of
each individual’s residual score in the regression equation

[y —vl 2)

individual predictability” and to predict

? 131

as a measure of each person’s

_ these scores by external variables (“ prediction of predictability”’; Ghiselli,

1960, 1963). However, this approach did not prove to be very successful,
mainly because the predictors found were quite specific to the criterion
variables and could not be cross-validated. For these reasons, Ghiselli’s
approach was not pursued further although some authorities still regard
it as an interesting one (cf. Wiggins, 1973, chap. 2, and Paunonen & Jack-
son, 1985, footnote 7).

Besides this apparent failure of Ghiselli’s approach to yield stable re-
sults in empirical applications, there seems to be a more fundamental
problem involved in his approach. Ghiselli chose each person’s deviation
from the regression line as a measure of individual consistency. Thus, he
compared each person’s change with the change expected by the ““regres-
sion to the mean effect”. It is a widespread belief among psychologists that

the regression to the mean is some kind of * natural law” in psychological

data sets. As Rogosa, Brandt and Zimowski (1982) and others pointed
out, this belief is a myth.
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A regression to the mean effect may or may not occur depending on the
variable observed; it is certainly to be expected only if all inconsistency at
the aggregate level (and hence all differential consistency) were just ran-
dom. If there are psychologically meaningful differences among the indi-
vidual consistencies, differential consistency is not random, and correcting
for a falsely expected regression to the mean obscures the interpretation
of the differential consistency which remains. It is mainly for this reason
why 1 do not find Ghiselli’s approach viable. Another reason is that
absolute deviation scores are not consistent with the mean, the variance,
and the correlation (they are consistent with the median; cf. Hays, 1981,
p. 164-165).

In what follows, I will propose a coefficient of individual consistency
that allows an analysis of the consistency of interindividual differences at
the level of individual subjects. Because the coefficient is consistent with
the correlation at the aggregate level, it makes the notion explicit that the
correlation is essentially the sample mean of individual consistency scores.
More importantly, the coefficient provides information beyond that
mean, i.e., beyond the correlation: distributional characteristics of the
individual consistencies, such as their variance, or a possible multimodal-
ity of the distribution of these consistencies, which would suggest that

~subgroups with different mean consistency can be distinguished.

2. Method

2.1 Desired properties of individual consistencies

A coefficient of individual consistency should have the following four
properties. First, it should be invariant in linear transformations of the
two variables to be compared, i.e. it should be possible to define the
coefficient solely by the z-transforms of the two variables. Since the coef-
ficient should be consistent with the correlation, this assumption is neces-
sary.

Second, the coefficient should be a strictly decreasing function of the
absolute z-score-difference of the two variables to be cqmparcd for consis-

tency. Thus, the individual consistency of a person should be at maximum

when the person has the same z-score in both variables, and it should

become smaller, as the absolute difference between.the two z-scores in-.
creases. This makes sense when the consistency of the scores of a person .

is defined at the individual level.

Third, the coefficient of individual consistency should be a linear fuqc;f _
tion of the squared differences of the z-scores of the two variables. This..

0

¢
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assumption makes the coefficient commensurate with variance and corre-
lation, which also depend upon squared differences (and not absolute
differences which are consistent with the median; cf. Hays, 1981, p. 164
165).

Fourth, the sample (or the population) mean of the coefficient of indi-
vidual consistency should be identical with the correlation. Since the third
proposition includes the first two, it suffices to consider only the third and
the fourth postulate.

2.2 Individual consistency as a random variable

In this section, individual consistency is introduced at the most general
level possible as a random variable which is defined by any two random
variables X, Y on the same probability space @ which have existing
moments of degree 1—4. This very general approach makes it easier to
prove various properties of the individual consistencies. For a better un-
derstanding of the meaning of the following Theorems for psychological
applications, one may conceive the probability space @ to consist of a
finite population of persons. Two random variables X, Y assign to each
person p latent scores X{p), Y(p) with a certain probability; then, the
expectations of X, Y exist and are the population means of X, Y.

The proofs of the following Theorems repeatedly make use of certain
well-known properties of Z-transformed variables. These properties are
summarized in the following Lemma.

Lemma. Let X, Y: 2 — R be random variables with existing expectations

E(X), E(Y), variances ¢%(X), 62(Y), third moments E(X?), E(Y?), corre-

lation gxy, and Z-transformation Zy, Zy (e.g., Zy = (X — E(X))/a(X)).

Then the following propositions hold (cf., e.g., Hays, 1981):

(1) E(Zy) =0.

() E(ZY =o*(X) =1.

(3) E(Zp) =0 if X is symmetrically distributed.

4) B(ZxZy) = oxy

(5) E((Zx ~ Zy)") = 6*(Zx — Zy) = 2(1 — oxv) -

(6) The linear regression equation Zy =gyxyZyx +¢ holds where
e: Q: — R is the error variable with E(e) = 0 and E(Zx¢) = E(Zye)
=1 — g%, and E(e?) = 1 — ¢?y. If Zy is not nonlinearly stochasti-

cally dependent upon Zy, i.e. if E(Zy|Zy) = oxy Zx for the conditional
expectation of Zy under Zy, then E(Z%e) = E(Zye?) = 0.
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The first Theorem proves that there is one and only one variable satis-
fying the four desired properties for individual consistency coefficients
outlined in the preceding section,

Theorem 1. Let X, Y: @ - R be two random variables with correlation
Oxy- Then there is one and only one random variable Iy, which satisfies
the following three conditions:

(1) Ixy is independent of gxy.
(2) Ixy is a linear function of (Zy — Zy)?.
(3) E(Ixy) = exy-

(Zx — Zy)*

Itis Ly = 1 — 225

(“‘individual consistency of X, Y™).

Proof. E(Ixy) =1— % “B((Zx — Zy)®) = 1 — (1 — gxy) = oxy according
to Lemma (5). Let Jxy: Q2 - IR be a random variable satisfying (1)

- —(3). Hence there exist abelR,b#+0, with gyy=E{xy)

= E(a + b(Zx — Zy)?) = a + 2b(1 ~ gxy) according to Lemma (5). For
gxy = it follows that 1 = a; thus, for g4y = 0 it follows that 0 = 1 + 2b,

ie,b=— % Hence Jyy = Ixy.

The following Theorem proofs some basic properties of the individual
consistency Iyy which hold without any particular assumption about X, Y.

Theorem 2. Let X, Y: Q2 — IR be two random variables with correlation
Oxy and individual consistency Ixy. Then the following propositions hold:

(1) Forall peQ,
(@) Ly =1.
®) Ly(@®) =1 ifand only if Zx(p) = Zy(p).-
© Lo =0 ifandonlyif |Zx(p)—Zy(®) =)/2.

(@) 6 = 3 EZx ~ Ze)*) — (1 — ox)™

1 .
3) xixy = m “E(Zx(Zx — Zv)z) for oxy F 1

. (4) With decreasing correlation gyy, the individual consistency Iy shows

an increasing quadratic stochastic dependence upon X. For gxy = = 1

1 2
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Proof.

(1) is trivial.

2 UB(IXY) == E(I}zcy) - E(IXY)Z

- E((1 _ @zc_%?v)_f)z) Y

Zyx—Zy)*
~ (1 - G20+ BB g,

1
=1—2(1 = oxv) + 1 'BE(Zx — Zv)") — 0%y

aécording to Lemma (5)
1
=3 E((Zx — Zy)*) — (1 — 2¢xy + 0%v)

1
T3 E((Zx — Zy)*) — (1 — exy)*.

(3) For oxy +1,

1
Oxixy = —— - COV(Zy, Ixy)  for the covariance COV
o (Ixy)

732
_1 COV(ZX, 1 — M)

aaxy; 1 2

= =i 2 COVZo Zx— 2y

- ??7(15&3 E(Zx(Zx — Z9)?) ~ E(Zy) - B((Zx ~ Zy)?)]
- “z}”(ji;';j ‘B(Zx (Zx — Zy)).

(4) According to Lemma (6),
Zy — Zy)? 1
hy =1~ ESB0 yT (2 g2y~
1 2
=1 -5 (= ex) Zx — )
1 L~
=1 "E‘(ﬂ —oxv)’ Zx — 2(1 — oxy) Zxe + ez)‘v

Foroyy =1itisIxy =1~ %ez. For gxy <1, (1 — g}y) > 0, ie. Ixy

is quadratically stochastically dependent upon X. Since for p; < ¢, it
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follows that (1 — g,)* > (1 — g,)*, this dependence increases with de-
creasing gyy -

Zy + Zy — €)? 1V
Forgxy=-1,IXY=1——(—~—3—i—7’5—-——)~=1—-2(2x—§e).
Theorem 2 states that there may be a nonzero correlation between X, Y
and their individual consistency. The next Theorem provides sufficient
conditions for this correlation to be zero:

Theorem 3. Let X,Y:8Q - be random variables with correlation
@xy ¥ 1 and individual consistency Ixy. If Y is not nonlinearly stochasti-
cally dependent upon X, gy, is a function of the asymmetry of X:

. (1 —oxv)*
Xixy ™ 20 (I::Y) E(Z;()

If, in addition, X is symmetric, then gx;,, = 0.
Proof. If Y is not nonlinearly stochastically dependent upon X, the same
is true for Zy, Zyx. From Lemma (6) it follows that
E(Zx(Zx — Zy)*) = E(Z3) — 2E(Z3Zy) + E(Zx Z})
= E(Z3) — 2E(Z%(oxy Zx + ©)) + E(Zx(oxv Zx + ©)%)
=E(Z3) — 20xvE(Z}) + okvE(ZR)
=E(Z) (1 — 20xy + 0%v)
= E(Z}i) (1- va)z-

Applying this equation to Theorem 2 (3) yields the proof. If X is sym-
metric, then E(Z3) = 0 according to Lemma (3), hence ex1yy = 0-

If X, Y are bivariate normally distributed, they fulfill both conditions
stated in Theorem 3. Furthermore, the distribution of the individual con-
sistency has a well-known form in this case, and its variance can be
expressed very simply:

Theorem 4. Let X, Y: Q — R be bivariate normally distributed random
variables with correlation gxy and individual consistency Ixy. Then the
following propositions hold:

(1) lQXlx-v = 0

(2) For gyxy # 1, Ixy is a linear function of a random vanable with a y?-
dlstnbutzon w1th one degree of freedom:

Liy=1—-(1- o) X(x)-
(3) o? (Ixy) = 2(1 — oxy)*.
(4) Ixy is strongly skewed to the left with skewness — ]/§ and excess 12.

R
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Proof.

(1) Since X, Y have a bivariate normali distribution, they are symmetrical-
1y distributed and show no nonlinear stochastic dependence (cf,, e.g.,
Hays, 1981, p. 463). According to Theorem 3, it is gx,., = 0.

(2) Since X, Y are bivariate normally distributed, their difference Zy — Zy
is normally distributed (cf.,, e.g., Rao, 1965, p.438). Since
E(Zx — Zy) =0and E((Zx — Zy)?) = 2(1 — gxy) according to Lem-

ma (5), the random variable % has a standard normal
. L/ﬂ — @xy
distribution. Since the square of this variable has a x},-distribution
(Zx—Zy) _ 7
201 —exy)

(3) The variance of @, is 2. Thus, 6% (Ixy) = (1 — gxy)* 2.

(4) The skewness of xf, is ]/— its excess is 12 (cf, e. g Abramo-
witz & Stegun, 1972). Since the skewness of a variable is invariant
against linear transformations (except for sign change), and the excess
is fully invariant against linear transformations, proposition (4) fol-
lows directly from the properties of the x3,-distribution.

by definition

Theorem 4 points to a problem of the individual consistency scores as
defined in this section. If the variables X, Y perfectly meet the require-
ments for the correlation as a measure of stochastic relation; the individual
consistencies are strongly skewed. Thus, it would be misleading to apply
linear analyses to them — for example, computing difference scores or
variances in order to analyze the data for differential stability.

Therefore, it seems necessary to transform the individual consistencies
in such a way as to obtain a fan'ly normal distribution. The followmg
conjecture proposes a solution to this problem: :

Conjecture. Let X, Y: Q - R be bivariate normally distributed random

variables and Iyy their individual consistency. Then the following trans-
formation T: R — R leads to a fairly normal dastrlbutlon of the individual
consistencies:

1 [1.001 + Iy - - .
57l [——-——-——1001‘_1“] for 0 < Iy =1 (peR)

Tlxy = )
= In for Ixy(p) <0.
1= Ty

It is T(0) = 0 and T(1) = 3.80.

Remark. The transformatlon T is nearly identical with Fisher s Z-transfor-

mation for correlations if Iy (p) = 0, except for the constant 1.001 instead -
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of 1. This shght deviation is necessary because Iy(p) may equal one in
which case Fisher’s Z is not defined. If I y(p) < 0, T must be defined
differently because, contrary to correlations, Iy is not distributed sym-
metrically around zero,

While simple computation suffices to proof the formulas for T(0), T(1),
an algebraic proof of the rest of the conjecture is not easy. Instead, the
normalizing property of the transformation T for bivariate normal distri-
butions will be demonstrated in the following section with Monte-Carlo
studies.

2.3. Monte-Carlo studies of individual consistencies

If X, Z are stochastically independent standard normal distributions, the
variable

YO =rX+|/1-12-2Z 3)

is also a standard normal distribution. Furthermore, for each fixed value
of X or Z, the respective conditional distribution is normally distributed.
Thus, X, Y(r) are bivariate normally distributed with correlation r. For a
given — 1 S 1 < 1, this allows to generate approximately bivariate normal
distributions with correlation r by combining two independently generat-
ed, approximately normally distributed, z-transformed sequences of ran-
dom numbers. '

For each level of r=08—-k-0.2 (k=0,...,9), 100 different
pairs of approximately standard bivariate normal distributions
X, Y(@); (i=1,...,100) of 100 random numbers with correlation r were
generated with the function RANNOR of the Statistical Analysis System
(SAS). For each pair, various descriptive indices (including the individual

consistencies Iyy between X, Y (r)) were computed as well as the correla- .

tion between X and Iy and the transformed scores TIyy. Each of these

descriptive indices was then averaged over the 100 pairs of variables:

X;, Y(r); for each level of r. Table 1 contains the results of these analyses.
Figure 1 shows the distribution of the individual consistencies as well as

the distribution of their transformation for the pooled 100 Monte-Carlo

studies (i.e., 10000 values) for five different levels of correlation r.

The effectiveness of the transformation T in normalizing the distribu-
tion of the individual consistencies can be seen from Figure 2. The more
the individual consistencies approach the maximum score of one, the more
they are differentiated by the transformation T. On the other hand, the

more the individual consistencies are negative,; the more they are damp-
ened by T. This last property of T has the advantage that outliers in the -

distribution of the individual consistencies are made less extreme.
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Table 1: Descriptive scores for the individual consistencies between bivariate
nomal distributions with differing correlation (mean of 100 Monte-Carlo studies
with N=100 in each case; standard deviations within the 100 studies in brackets)

Correlation r

Descriptive score 0.80 0.40 000 —040 —0.80
Mean of Iyy, 0.80 0.41 001 —037 —0.80
(0.01) 0.06) 0.10) 0.15) 0.11)

Std of Iy 0.27 0.82 1.36 1.91 2.53
(0.04) 0.12) (019 0.29) (0.35)

V2-1 -1 0.28 0.85 1.41 1.98 2.55
Skewness of Iyy,y —2.35 —2.51 —2.38 - 245 —2.54
(0.69) (0.68) (0.68) (0.59) (0.82)

Excess of Iyyq, 7.25 8.21 7.36 7.63 8.66
(563) (565  (540)  (4.66)  (7.49)

Mean of Tlyy, 1.63 1.00 0.65 0.41 0.21
(0.06) 0.09) 0.11) {0.11) (0.10)

Std of Tlyy 0.96 1.15 1.27 1.34 1.41
(0.05) 0.07) 0.06) {0.08) (0.09)

Skewness of Tlyy, 0.41 0.25 0.26 0.26 0.29
0.17) (0.18) 0.17) 0.15) 0.17)

Excess of Tlyy -037 -—-019 —-027 -028 —033
{0.26) (0.32) 0.29) (0.30) (0.26)

Correlation ry; . 0.00 0.02 0.01 0.02 0.01
S 011 (011)  (013) (015  (0.15)

Correlation ryq,, 0.00 0.01 0.02 0.01 0.01
‘ (0.11) 0.09) 0.09) (0.08) (0.07)

Figures 3 and 4 illustrate the nonlinear stochastic dependence of the
(transformed) individual consistencies upon X. Figure 3 shows the most
extreme dependence for ryy = — 1.

Figure 4 demonstrates for — 1 < rxy < 1 that this nonlinear stochastic
dependence leads to a “hole” in the joint distribution of X, Ixy, or Tlgy,
respectively, which increases the more negative the correlatlon rxy be-
comes.

Figure 4 suggests that for the positive or — at worst — sli ghtly negative
correlations of studies of consistency, the nonlinear stochastic dependence
between X and the individual consistencies or their transformations plays
a minor role. Only extréme inconsistencies are affected insofar as they can
" only occur for extreme values of X. This relation must hold because




Jens Asendorpf

12

1600 .

AR

o0

e

50001

e
o

o
v HY
o
7 ?
T t

LE:
088
7906
000
RE
00
30
nw
W

4000




13

Individual Consistency
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Figure 1. Individual consistencies (left), and their transformations (right), for
bivariate normal distributions with varying correlation.

»

lzx—zyl

individual
consistency

Figure 2: Dependence of the (transformed) individual consistencies upon the z-

score difference.
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Zy

1

+3

Individual
consistency

Tl xy

Figure 3: Perfect, nonlinear relation between initial scores and the (transformed)
individual consistencies for ryy = — 1.

extreme inconsistencies can only be caused by switching from one extreme
score to the opposite extreme score.

The increase of nonlinear stochastic dependence between X and the
individual consistencies with increasingly negative correlations is an exam-
ple of the sensitivity of the individual consistencies to sign changes of the
variables compared. Note that in regression problems, no such sensitivity
exists. As a consequence, studies of consistency should always try to score
the variables compared for consistency in a way that minimizes negative
correlations among these variables.

r=0.80




r=0.40

r= 0,00

r = — 040

r= - 0.80

Figure 4: Results of the Monte-Carlo studies regarding the increasingly nonlineas

stochastic dependence between X and the individual consistencies (left) and the

transformed individual consisténcies (right) for various correlations between X, Y
{each diagram represents 100 studies with N = 100 each).
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3. Example

The measurement of individual consistency is now illustrated with a data
set reflecting the longitudinal stability of children’s social competence
(because in this example the consistency over time is investigated, 1 prefer
the term (individual or differential) stability). The data stem from the
Munich Longitudinal Study on the Genesis of Individual Competencies
(LOGIC, Weinert & Schneider, 1986).

Figure § presents the scatterplot of the one-year stability of r = 0.40 of
the observed rate of shy contact initiations among all initiations directed
to peers during free-play in preschool for 68 children.

The scatterplot indicates that children’s rate of shy behavior showed a
substantial differential stability. This can be easily seen by comparing their
scores with the stability line y = (sy/sx) (X — my) + my, where sx, sy are
the standard deviations of X, Y, and my, my are the means of X, Y (cf.
Fig. 5). The stability line is identical with the regression line for ryy = 1.

The data presented in Figure 1 are now analyzed in terms of the coeffi-
cients of individual consistency. The distributions of the observed rates of
shy behavior deviate somewhat from normality (for Kolmogorov’s test for
deviation from normality, d = 0.15, p < 0.01, for the first year of observa-
tion; d = 0.08, p < 0.08, for the second year). However, as Figure 6 indi-
cates, these deviations are not extreme.

Figure 6 shows that the distribution of the (untransformed) individual
consistencies Iy is strongly skewed to the left with mean 0.40, standard

FIRST YEAR
100%

100%
SECOND YEAR

0%

Figure 5: One-yedr stability of interindividual differences in the rate of shy behav-
ior during contact initiation attempts at free-play in preschoo! (n = 68).

AT,
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deviation 1.23, minimum - 7.49, and maximum 1.00; the distribution of
the transformed individual consistencies T 1y is fairly normal (d = 0.07,
p = 0.15) with mean 1.16, standard deviation 1.31, minimum — 2.14, and
maximum 3.80.

Comparing these data with the corresponding ones for bivariate normal
distributions (cf. Table 1) indicates that both standard deviations and the
mean of the transformed individual consistencies are somewhat greater
than to be expected on the basis of a correlation of 0.40. Comparing
Figures 1 and 6 suggests that this is due to the few children with very low
or very high individual consistencies.

Table 2 contains some descriptive scores of the five children marked in
Figure 5. Table 2 indicates that child no. 5 is extremely inconsistent in the
rate of shy behavior observed. The other four children have a rate of shy
behavior more than one standard deviation above the sample mean for
both measurement points. Their individual consistencies still vary consid-
erably, from the virtually perfect consistency of child no. 3 to a consider-
able inconsistency of child no. 1. Thus, the coefficients of individual con-
sistency (particularly the untransformed scores) are sensitive to differences
within extreme scores.

The dependence of the individual consistencies upon the scores of the
two assessments compared was analyzed by correlating the transformed
individual consistencies with these scores (the untransformed consistencies
should not be used for these analyses because of their highly skewed
distribution). A correlation of r = — 0.41 (p < 0.001) was found for the
first assessment, and one of r = — 0.12 (ns) for the second assessment.
Thus, the more children were found to be shy during the first observation
period, the less consistent their rates of shy behavior were over the one-
year period. For a closer analysis, the scatterplot of the correlation of
r = — 0.41 was investigated (cf. Figure 7).

The scatterplot indicates that the negative correlation between the
scores of the first assessment and the individual consistencies strongly
depended upon the two children with the lowest consistencies (no. 1 and
5 from Fig. 1, 7). Excluding these two children, the correlation decreases
tor = —0.28 (n = 66, p < 0.03). On the other hand, the negative relation
between the initial scores and the individual consistencies is not just an
artifact. When the individual consistencies were correlated with nearly 100
different measures of the children’s social behavior and cognitive function-
ing obtained during the first and the second year of assessment, a clearcut
picture emerged. Only variables tapping children’s shyness correlated at
least r =0.30| with the individual consistencies for shy contact initiation
behavior, and all of these correlations were negative. Besides observed shy
contact initiations, the parental rating of children’s shyness toward other
children in the first year of assessment (r = — 0.39), as well as in the

~ second year (r = — 0.36), the teacher rating “shy in the preschool group”
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five

of the five children marked in figure

Table 2: Descriptive scores
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Figure 6: Distributions of the: observed rates of shy behavior at ‘the two assess-

ments and of the (transformed) individual consistencies between these assessments.

(r = — 0.30), and the mean length of silences in children’s conversations
with an adult stranger (+ = — 0.42) showed substantial negative correla-
tions with the individual consistegcies (in each case, p < 0.02). -

This correlational pattern supports the notion that-the higher shyness is -

among young children, the less stable it is over time. This result fits with
the data of the Harvard .longitudinal study on behavioral inhibition
(Reznick et al., 1986). In this study of extreme groups of shy-and non-shy
children, some of the childgen found to be very shy in: the third year of life
became much less shy two years later whereas no single instance of a

) merse————
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Figure 7: Scatterplot of the dependenoe of the transformed individual consisten-
mes upon the scores of the first assessment.

change from Jow shyness to high shyness was observed during this two-
year period. Thus, the differential consistency of shy behavior observed in
the present study could be partly explained in a meamngful way by apply-
ing the proposed coefficients of lndlvldual consxstency

4. Discussion and conclusion

The eXampiéﬂluéﬂaies how the pmpoéed coefficients of individual consis-

tency can be applied to psychological data sets (cf. Asendorpf, in press, for
other applicdtions to-longitudinal data), The coefficients of individual
consistency may be also used tor explore the consistency of 1ntennd1v1dual '

differences in; behavmr ‘ACTOSS mtuauons or dlﬁerent méasures of the same
construct. :

o,

S
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The proposed coefficients of individual consistency fill a gap in present
differential methodology by allowing a detailed descriptive analysis of
differential consistency. Because the transformed individual consistencies
are less sensitive to outliers than the raw individual consistencies, they
provide a measure of consistency at the aggregate level which is more
robust than the correlation (cf. Fig. 2 and Asendorpf, in press, for more
evidence). Finally, the transformed individual consistencies open a new
approach to studying moderator effects simply by correlating the individ-
ual consistencies with external variables.

The approach to the measurement of individual consistency presented
here is based on a parametric approach. Alternatively, a non-parametric
approach could be chosen by “individualizing™ rank-order measures of
consistency such as Kendall’s 7. Although some information will be lost
in this case, a non-parametric approach has the advantage of providing
even more robust measures of (individual) consistency.

- All in all, the measurement of individual consistency may open new
avenues for the study of stability and change in human characteristics, and
might help making differential psychology more differential than it is
today.
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