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Abstract 

The N400 component of the event-related brain potential has aroused much interest 

because it is thought to provide an online measure of meaning processing in the brain. This 

component, however, has been hard to capture within traditional approaches to language 

processing. Here, we show that a neural network that eschews these traditions can capture a 

wide range of findings on the factors that affect the amplitude of the N400. The model 

simulates the N400 as the change induced by an incoming word in an initial, implicit 

probabilistic representation of the situation or event described by the linguistic input, captured 

by the hidden unit activation pattern in a neural network. We further propose a new learning 

rule in which the process underlying the N400 drives implicit learning in the network. The 

model provides a unified account of a large body of findings and connects human language 

processing with successful deep learning approaches to language processing. 
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I like coffee with cream and dog? Change in an implicit probabilistic representation 

captures meaning processing in the brain 

 

The N400 component of the event-related brain potential (ERP) has received a great 

deal of attention, as it promises to shed light on the brain basis of meaning processing. The 

N400 is a negative deflection at centroparietal electrode sites peaking around 400 ms after the 

presentation of a potentially meaningful stimulus. The first report of the N400 showed that it 

occurred on presentation of a word violating expectations established by context: given “I 

take my coffee with cream and …” the anomalous word dog produces a larger N400 than the 

congruent word sugar 1. Since this study, the N400 has been used as a dependent variable in 

over 1000 studies and has been shown to be modulated by a wide range of variables including 

sentence context, category membership, repetition, and lexical frequency, amongst others2. 

However, despite the large amount of data on the N400, its functional basis is not well 

understood: various verbal descriptive theories are actively debated3–7, but their capacity to 

capture all the relevant data is difficult to stringently evaluate due to the lack of 

implementation and none has yet offered a generally accepted account. Indeed, the authors of 

a recent review (Kutas & Federmeier, 2011) have noted that “ERP parameters are (…) neither 

generally nor readily reducible to psychological constructs.” Ultimately, the authors suggest 

“the field must be willing to rethink the pool of available cognitive constructs it has 

developed, largely from end-state measures” (p. 624).  Existing accounts are often grounded, 

at least in part, in traditional modes of theorizing based on constructs originating in the 

1950’s8, in which symbolic representations (e.g., of the meanings of words) are retrieved from 

memory and subsequently integrated into a compositional representation – an annotated 

structural description thought to serve as the representation of the meaning of a sentence9–11. 

Even though perspectives on language processing have evolved in a variety of ways, many 

researchers maintain the notion that word meanings are first retrieved from memory and 
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subsequently assigned to roles in a compositional representation. The account we offer here 

does not employ these constructs and thus may contribute to the effort to rethink aspects of 

several foundational issues: What does it mean to understand language? What are the 

component parts to the process? Do we construct a structural description of a spoken 

utterance in our mind, or do we more directly construct a representation of the speaker’s 

meaning? Our work suggests different answers than those often given to these questions.  

We present an explicit computational model that accounts well for a wide range of 

findings in the literature on the N400.  The model, called the Sentence Gestalt (SG) model, 

was initially developed nearly 30 years ago 12,13 with the explicit goal of illustrating how 

language understanding might occur without relying on the traditional mode of theorizing 

described above.  The model sought to offer a functional-level characterization of language 

understanding in which each word in a sentence someone hears or reads provides clues that 

constrain the formation of an implicit representation of the event being described by the 

sentence.  The initial work with the model13 established that it could capture several core 

aspects of language, including the ability to resolve ambiguities of several kinds; to use word 

order and semantic constraints in constructing the event representation; and to represent 

events described by sentences never seen during the network’s training. 

The current work extending this model to address N400 amplitudes complements 

efforts to model neurophysiological details underlying the N40014–16; we focus on providing a 

functional level account of the way the probabilistic relationship between linguistic utterances 

and their meanings – and human experience of this relationship – shapes the extent to which 

the presentation of a word or sequence of words updates a learned representation of meaning, 

defined as an implicit representation that supports accurate estimates of the probability of the 

different aspects of the event described by the sentence. 

The design of the model reflects the principle that listeners continually update their 

representation of the event being described as each incoming word of a sentence is presented.  
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The representation is an internal representation (putatively corresponding to a pattern of 

neural activity, modeled in an artificial neural network) called the sentence gestalt (SG) that 

depends on connection-based knowledge in the update part of the network (see Fig. 1). The 

SG pattern can be characterized as implicitly representing subjective probability distributions 

over the aspects or features of the event being described by the sentence and of the 

participants in the event (see Implicit probabilistic theory of meaning section in online 

methods). The magnitude of the update produced by each successive word corresponds to the 

change in this implicit representation that is produced by the word, and it is this change, we 

propose, that is reflected in N400 amplitudes. Specifically, the semantic update (SU) induced 

by the current word n is defined as the sum across the units in the SG layer of the absolute 

value of the change in each unit’s activation produced by the current word n. For a given unit 

(indexed below by the subscript i), the change is simply the difference between the unit’s 

activation after word n and after word n-1:  

�400� = ��� = �|
�(
�) − 
�(
���)|�  

This measure can be related formally to a Bayesian measure of surprise17 and to the signals 

that govern learning in the network (see online methods and below). Indeed, we propose a 

new learning rule driven by the semantic update, allowing the model to address how language 

processing even in the absence of external event information can drive learning about events 

and about how speakers use language to describe them. 

 How does the semantic update capture the N400? After a listener has heard “I take my 

coffee with cream and…” our account holds that the activation state already implicitly 

represents a high subjective probability that the speaker takes her coffee with cream and 

sugar, so the representation will change very little when the final word “…sugar” is presented, 

resulting in little or no change in activation, and thus a small N400 amplitude. In contrast, the 

representation will change much more if “…dog” is presented instead, corresponding to a 
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much larger change in the subjective probability, reflected in a larger change in the pattern of 

activation and thus a larger N400 amplitude. 

Distinctive Features of the Sentence Gestalt Model 

 Several aspects of the model’s design and behavior are worth understanding in order 

to see why it accounts for the findings we apply it to below.  First, the model is designed to 

form a representation of the event described by the sentence that it hears, rather than a 

representation of the sentence itself.  The words (and their arrangement) provide clues about 

the event, and objects can be inferred as event participants without being mentioned.  For 

example, a knife might be inferred upon hearing ‘The boy spread the butter on the bread.’ 

This makes it different from many other models of language processing in which listeners are 

thought to be updating specifically linguistic expectations about specific words or to be 

building structured representations in which word meanings are inserted into roles or slots in a 

structural description that may be tied closely to the sentence itself10,11. Furthermore, unlike 

most other models, the SG model does not contain separate modules that implement distinct 

stages of syntactic parsing or of accessing the meanings of individual words on the way to the 

formation of a representation of the event.  Instead the model simply maps from word forms 

to an implicit probabilistic representation of the overall meaning of the sentence. 

 Second, we as modelers make no stipulations of the form or structure of the model’s 

internal representations1. Rather, these representations are shaped by the statistics of the 

experiences it is trained on, as in some language representation models developed by other 

groups in recent years 18,19.  In this way our model is similar to contemporary deep learning 

models such as Google Translate20, which likewise make no stipulations of the form or 

structure of the internal representation generated from an input sentence; instead the 

                                                           
1
 To train the model, the model does require a way of providing it with information about the event described 

by the sentence.  We follow the choice made in the original implementation, in which events are described in 

terms of an action, a location, a situation (such as ‘at breakfast’), the actor or agent in the event, and the object 

or patient to which the action is applied.  Critically, the event description is not the model’s internal 

representation of the event, but is instead a simplified characterization of those aspects of events that the 

model learns to derive from the presented sentences. 
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representations are shaped by the process of learning to predict the translation of an input 

sentence in one language into other languages. Though our model is simpler than Google 

Translate, which employs more layers of neuron-like processing units, the models are similar 

in avoiding representational commitments, and the success of Google Translate can be seen as 

supporting the view that a commitment to any stipulated form of internal representation is an 

impediment to capturing the nuanced, quasiregular nature of language21,22. Learning takes 

place in the model over an extended time course thought of as loosely corresponding to the 

time course of human development into early adulthood, based on the gradual accumulation 

of experience about events and the sentences speakers use to describe them. Among other 

things, this means that the extent of the semantic update that occurs upon the presentation of a 

particular word in a particular context depends not only on the statistics of the environment, 

but also on the extent of the model’s training – thereby allowing it to address changes in N400 

responses as a function of experience.   

 Third, the model responds to whatever inputs it receives, independently of whether its 

inputs form sentences or are simply isolated words or pairs of words.  Thus the model will 

update its state after the presentation of any word, allowing the possibility of capturing 

findings from N400 studies in which words are presented singly or in pairs, as well as 

findings from studies in which N400’s are observed to words presented in complete sentence 

contexts.   

 Finally, we view the processing of language (and other forms of meaningful input) to 

be a complex and multi-faceted process, and we see the SG model – and the N400 – as 

characterizing one aspect of this process. This view is consistent with the fact that other ERP 

components appear to reflect different aspects of language processing.  Specifically, we see 

the model as reflecting an implicit process that operates quickly and automatically as a stream 

of linguistic input is presented, constructing an implicit, initial representation of the event or 

situation that is being described.  Language processing may also involve other components 
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that might form expectations about specific word-forms and their sequencing that are not 

captured by the SG model or the N400.  Furthermore, the initial representation that the model 

forms as it processes language in real time may not always correspond to the final understood 

meaning of a sentence.  Other processes may come into play in understanding sentences with 

unusual structure, and these processes may result in changes to the meaning representation 

that is ultimately derived from reading or listening to a linguistic input. In the Discussion 

below we consider how the formation of an initial, implicit representation of meaning, as 

captured by the SG model, might fit into this broader picture, and how our findings may 

inform discussions of other aspects of human language processing. 

Training the Sentence Gestalt Model 

 To train the model, we use an artificial corpus of {sentence, event} training examples 

produced by a generative model that embodies a simplified and controlled micro-world in 

which the statistics of events, the properties of the objects that occur in them, and the words 

used in sentences about these events are completely controlled by the modeler (see online 

methods). This approach prevents us from testing the model with the actual sentences used in 

targeted experiments, since the true statistics of real events and sentences are not fully 

captured.  Given the successes of Google Translate and other deep learning approaches to 

language processing, it may eventually be possible to train a successor to our model on a 

much larger corpus of real sentences, allowing modeling of the semantic update produced by 

the actual materials used in empirical experiments.  Such a success would still leave open the 

question of what factors were responsible for the model’s behavior.  Our approach, relying on 

a synthetic corpus, allows us to build into the training materials manipulations of variables 

corresponding to those explored in the designs of the experiments we are modeling. For 

example, we can separately manipulate how frequently an object designated by a particular 

word appears in an event of a particular type (e.g. how often a knife is used for spreading 

butter on bread) and the extent to which the properties of the object signaled by a word are 
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consistent with the properties of the objects that typically appear in events of this type (e.g. an 

axe, though never used in spreading, is more semantically similar to a knife than a chair is).  

Thus we are able to separate predictability from semantic similarity more cleanly than might 

be possible using a large corpus of real sentences. 
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Figure 1. The Sentence Gestalt (SG) model architecture, shown processing a sentence with a high or low cloze probability ending, and the model’s N400 correlate. The 
model (gray boxes on the left) consists of an update network and a query network. Ovals represent layers of units (and number of units in each layer). Arrows represent 
all-to-all modifiable connections; each unit applies a sigmoid transformation to its summed inputs, where each input is the product of the activation of the sending unit 
times the weight of that connection. In the update part of the model, each incoming word is processed through layer Hidden 1 where it combines with the previous 
activation of the SG layer to produce the updated SG pattern corresponding to the updated implicit representation of the event described by the sentence. During 
training, after each presented word, the model is probed concerning all aspects of the described event (e.g. agent, “man”, action, “play”, patient, “monopoly”, etc.) in 
the query part of the network. Here, the activation from the probe layer combines via layer Hidden 2 with the current SG pattern to produce output activations. Output 
units for selected query response units activated in response to the agent, action, and patient probes are shown; each query response includes a distinguishing event 
feature (e.g. ‘man’, ‘woman’, as shown) as well as other features (e.g., ‘person’, ‘adult’, not shown) that capture semantic similarities among event participants; see 
Supplementary Table 1). After presentation of “The man”, the SG representation (thought bubble at top left) supports activation of the correct event features when 
probed for the agent and estimates the probabilities of action and patient features consistent with this agent. After the word “plays” (shown twice in the middle of the 
figure) the SG representation is updated and the model now activates the correct features given the agent and action probes, and estimates the probability of alternative 
possible patients. These estimates reflect the model’s experience, since the man plays chess with higher probability than monopoly. If the next word is “chess” (top), the 
change in the pattern of activation on the SG layer (summed magnitudes of changes shown in ‘Difference vector’) is smaller than if the next word is “monopoly” 
(bottom). The change signal, called the Semantic Update (SU) is the proposed N400 correlate (right).  It is larger for the less probable ending (monopoly, bottom) as 
compared to the more probable ending (chess, top). 
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Results 

 We report fourteen simulations of well-established N400 effects chosen to illustrate 

how the model can address a broad range of empirical findings taken as supporting diverse 

and sometimes conflicting descriptive theories of the functional basis of the N400 (see Table 

1). We focus on language-related effects but note that both linguistic and non-linguistic 

information contribute to changes in semantic activation as reflected by the N4002. 

 Please insert Table 1 about here  

Basic effects 

From “violation signal” to graded reflection of surprise. The N400 was first observed after a 

semantically anomalous sentence completion such as e.g. “He spread the warm bread with 

socks”1 as compared to a high probability congruent completion (butter). Correspondingly, in 

our model, SU was significantly larger for sentences with endings that are both semantically 

and statistically inconsistent with the training corpus compared to semantically consistent, 

high-probability completions (Fig. 2a and Supplementary Fig. 1a). Soon after the initial study 

it became clear that the N400 is graded, with larger amplitudes for acceptable sentence 

continuations with lower cloze probability (defined as the percentage of participants that 

continue a sentence fragment with that specific word in an offline sentence completion task), 

as in the example “Don’t touch the wet dog (low cloze)/ paint (high cloze)“23. This result is 

also captured by the model: it exhibited larger SU for sentence endings presented with a low 

as compared to a high probability during training (Fig. 2b, Fig. 1, and Supplementary Fig. 

1b). The graded character of the underlying process is further supported empirically by the 

finding that N400s gradually decrease across the sequence of words in normal congruent 

sentences24. SU in the model correspondingly shows a gradual decrease across successive 

words in sentences (Fig. 2c and Supplementary Fig. 1c; see online methods for details).  
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Figure 2. Simulation results for the basic effects. Displayed is the model’s N400 correlate, 
i.e. the update of the Sentence Gestalt layer activation – the model’s probabilistic 
representation of sentence meaning - induced by the new incoming word. Cong., congruent; 
incong., incongruent. See text for details of each simulation. Each blue dot represents the 
results for one independent run of the model, averaged across items per condition; the red 
dots represent the means for each condition, and red error bars represent +/- SEM 
(sometimes invisible because bars may not exceed the area of the red dot). Statistical results 
(t1 from the model analyses, t2 from the item analyses): a, semantic incongruity: t1(9) = 25.00, 
p < .0001, t2(9) = 11.24, p < .0001; b, cloze probability: t1(9) = 8.56, p < .0001, t2(9) = 6.42, p 
< .001; c, position in sentence: t1(9) = 8.17, p <.0001, t2(11) = 43.54, p <.0001  from the 
second to the third sentence position; t1 (9) = 4.73, p <.01, t2(11) = 4.66, p <.01, from the third 
to the fourth position; t1(9) = 17.15, p < .0001, t2(11) = 12.65, p <.0001, from the fourth to the 
fifth position; d, categorically related incongruities were larger than congruent, t1(9) = 10.63, 
p < .0001, t2(9) = 3.31, p < .05, and smaller than incongruent continuations, t1(9) = 14.69, p < 
.0001, t2(9) = 12.44, p < .0001; e, lexical frequency: t1(9) = 3.13, p < .05, t2(13) = 3.26, p < .01; 
f, semantic priming: t1(9) = 14.55, p < .0001, t2(9) = 8.92, p < .0001; g, associative priming: 
t1(9) = 14.75, p < .0001, t2(9) = 18.42, p < .0001; h, immediate repetition priming: t1(9) = 16.0, 
p < .0001, t2(9) = 18.93, p < .0001; i, semantic illusion: t1(9) = 2.09, p = .133, t2(7) = 5.67, p < 
.01, for the comparison between congruent condition and semantic illusion; t1(9) = 10.66, p < 
.0001, t2(7) = 3.56, p < .05,  for the comparison between semantic illusion and incongruent 
condition.  
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Supplementary Figure 1. Simulation results for the basic effects (by item). Displayed is the 
model’s N400 correlate, i.e. the update of the Sentence Gestalt layer activation – the model’s 
probabilistic representation of sentence meaning - induced by the new incoming word. Cong., 
congruent; incong., incongruent. See text for details of each simulation. Here, each blue dot 
represents the results for one item, averaged across 10 independent runs of the model; the red 
dots represent the means for each condition, and red error bars represent +/- SEM 
(sometimes invisible because bars may not exceed the area of the red dot). Statistical results 
are reported in the caption of Fig. 2 in the main text. 

 

Expectancy for words or semantic features? The findings discussed above would be 

consistent with the view that N400s reflect the inverse probability of a word in a specific 

context (i.e. word surprisal25), and indeed, a recent study observed a significant correlation 

between N400 and word surprisal measured at the output layer of a simple recurrent network 

(SRN) trained with a naturalistic corpus to predict the next word based on the preceding 

context26.  However, there is evidence that N400s may not be a function of word probabilities 

per se but rather of probabilities of aspects of meaning signaled by words: N400s are smaller 
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for incongruent completions that are closer semantically to the correct completion than those 

that are semantically more distant. For example, consider the sentence: “They wanted to make 

the hotel look more like a tropical resort. So, along the driveway they planted rows of …”. 

The N400 increase relative to palms (congruent completion) is smaller for pines (incongruent 

completion from the same basic level category as the congruent completion) than for tulips 

(incongruent completion not from the same basic level category as the congruent 

completion)”27. Our model captures these results: We compared SU for sentence completions 

that were presented with a high probability during training and two types of never-presented 

completions.  SU was lowest for high probability completions, as expected; crucially, among 

never-presented completions, SU was smaller for those that shared semantic features 

capturing basic level category membership as well as other aspects of semantic similarity with 

high probability completions compared to those that did not share semantic features with any 

of the completions presented during training (Fig. 2d and Supplementary Fig. 1d). 

Semantic integration versus lexical access? The sentence-level effects considered 

above have often been taken to indicate that N400 amplitudes reflect the difficulty or effort 

required to integrate an incoming word into the preceding context7,28. However, a sentence 

context is not actually needed: N400 effects can also be obtained for words presented in pairs 

or even in isolation. Specifically, N400s are smaller for isolated words with a high as 

compared to a low lexical frequency29; for words (e.g. “bed”) presented after a categorically 

related prime (e.g., “sofa”) or an associatively related prime (e.g., “sleep”) as compared to an 

unrelated prime30; and for an immediate repetition of a word compared to the same word 

following an unrelated prime31. Such N400 effects outside of a sentence context, especially 

the influences of repetition and lexical frequency, have led some researchers to suggest that 

N400 amplitudes do not reflect the formation of a representation of sentence meaning but 

rather lexical access to individual word meaning3,14. As previously noted, the SG pattern 
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probabilistically represents the meaning of a sentence if one is presented, but the model will 

also process words presented singly or in pairs. Indeed, the model captures all four of the 

above-mentioned effects: First, SU was smaller for isolated words that occurred relatively 

frequently during training (Fig. 2e and Supplementary Fig. 1e). Furthermore, SU was smaller 

for words presented after words from the same semantic category as compared to words from 

a different category (Fig. 2f and Supplementary Fig. 1f), and smaller for words presented after 

associatively related words (objects presented after a typical action as in “chess” following 

“play”) as compared to unrelated words (objects presented after an unrelated action as in 

“chess” following “eat”) (Fig. 2g and Supplementary Fig. 1g). Finally, SU was smaller for 

immediately repeated words as compared to words presented after unrelated words (Fig. 2h 

and Supplementary Fig. 1h).  

 Semantic illusions and the N400. A finding that has puzzled the N400 community is 

the lack of a robust N400 effect in reversal anomalies (also termed semantic illusions): a 

surprisingly small N400 occurs in sentences such as “Every morning at breakfast, the eggs 

would eat...“. There is clearly an anomaly here – English syntactic conventions map eggs to 

the agent role despite the fact that eggs cannot eat – yet N400 amplitudes are only very 

slightly increased in such sentences as compared to the corresponding congruent sentences 

such as “Every morning at breakfast, the boys would eat...“32.  This lack of a robust N400 

effect in reversal anomalies is accompanied by an increase of the P600, a subsequent positive 

potential.  In contrast, N400 but not P600 amplitudes are considerably larger in sentence 

variations such as “Every morning at breakfast, the boys would plant...“32. How can we 

understand this pattern?  One analysis33 treats these findings as challenging the view that the 

N400 is related to interpretation of sentence meaning, based on the argument that such 

sentences should produce a large N400 because they would require (for example) treating the 
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eggs as the agents of eating, and this would require a substantial change in the meaning 

representation.  

We find, however, that the semantic update in the SG model reproduces the pattern seen in 

the human N400 data. That is, the model exhibited only a very slight increase in SU for 

reversal anomalies (e.g., “At breakfast, the eggs eat…”) as compared to typical continuations 

(e.g., “At breakfast, the man eats…”), and a substantial increase in SU for atypical 

continuations (e.g., “At breakfast, the man plants…”) (Fig. 2i and Supplementary Fig. 1i). 

What happens in the SG model when it is presented with a reversal anomaly? Analysis of the 

query network’s response to relevant probes (Fig. 3) suggests that the model exhibits a 

semantic illusion, in that the SG continues to implicitly represent the eggs as the patient 

instead of the agent of eating even after the word eat is presented. This observation is in line 

with the idea that, when presented with a reversal anomaly, comprehenders still settle at least 

initially into the most plausible semantic interpretation of the given input (i.e., the eggs being 

eaten) even if the sentence is anomalous syntactically34.  Since in the model’s experience eggs 

are things that are eaten, and never things that eat, it continues to treat them this way even 

though the sentence structure differs from the structure it has experienced during training. To 

demonstrate the robustness of this kind of behavior in the model, we conducted an additional 

simulation of a similar finding using a slightly different type of reversal anomaly that has 

been the focus of a previous model33 (see discussion section for more details). The experiment 

was conducted in Dutch using Dutch word order conventions, and differed from the previous 

study in that two noun phrases are presented prior to the presentation of the verb.  In the 

anomalous sentences, the sentences seem to describe impossible events such as for instance 

an event in which a javelin throws some athletes (e.g. “De speer heft de atleten geworpen”, 

lit: “The javelin has the athletes thrown”), yet there is little or no N400 response at the 

presentation of the verb relative to ordinary control sentences in which it is the athletes that 

are said to do the throwing (“De speer werd door de atleten geworpen”, lit: “The javelin was 
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by the athletes thrown”) 35. For this simulation we trained an additional model on the same 

training corpus, but with Dutch word order (please see online methods and Supplementary 

Fig. 2 for details).  Once again the SG model is not ‘thrown’ by the anomalous sentences – 

instead it interprets both versions of the sentences in a way that is consistent with its 

experience with events.  

 

 

 

Figure 3. Processing semantic illusions. Activation of selected output units while the model 
processes a sentence from the semantic illusion simulation: “At breakfast, the egg eats…”.  
Note that the model continues to represent the egg as the patient (not the agent) of eating, 
even after the word “eat” has been presented, giving rise to a ‘semantic illusion’. 
 

In summary, the model shows that the lack of an N400 increase for reversal anomalies 

is consistent with the view that the N400 reflects the updating of an implicit representation of 

sentence meaning. The model pre-dates the discovery of the semantic illusion phenomenon, 

and accounts for it without any modification, though the details of experience (for the model 

and for human learning) are expected to affect the size and nature of the update produced by 
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particular anomalous sentences. As noted in the introduction, our account leaves open the 

possibility that other processes which may be reflected in the P600 could be involved in 

detecting the anomaly and possibly revising the initial interpretation captured by the SG 

model (see Discussion below). 

 

Supplementary Figure 2. Simulation results for a second type of semantic illusion where the 
relationship between two noun phrases is established prior to encountering the verb (see text 
for more details)35; the simulation was conducted with a model trained with Dutch word 
order. Cong., congruent; incong., incongruent. Top left. Each blue dot represents the results 
for one independent run of the model, averaged across items per condition. Top right. Each 
blue dot represents the results for one item, averaged across 10 independent runs of the 
model. The red dots represent the means for each condition, and red error bars represent +/- 
SEM. Results are similar as for the other semantic illusion simulation: t1(9) = 1.69, p = .38, 
t2(7) = 12.67, p < .0001, for the comparison between congruent condition and semantic 
illusion; t1(9) = 13.31, p < .0001, t2(7) = 6.76, p < .001, for the comparison between semantic 
illusion and incongruent condition, and t1(9) =12.18, p < .0001, t2(7) = 7.36, p < .001, for the 
comparison between congruent and incongruent condition. Bottom. Activation of the unit 
“pine” in response to the Agent and Patient probe while the model processes a sentence from 
this semantic illusion simulation, literally “The pine has the man watered.” (i.e., “The pine 
has watered the man.” with Dutch word order). As for the other semantic illusion, the model 
represents the pine as the patient instead of the agent of the event throughout the sentence.  
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  Specificity of the N400 to violations of semantic rather than syntactic factors. While 

the N400 is sensitive to a wide range of semantic variables, amplitudes are not influenced by 

syntactic factors such as for instance violations of word order (e.g., “The girl is very satisfied 

with the ironed neatly linen.”) which instead elicit P600 effects36.  Because the model is 

representing the event described by the sentence, and this event itself is not necessarily 

affected by a change in word order, the model is likewise insensitive to such violations.  To 

demonstrate this, we examined the model’s response to changes in the usual word order (e.g., 

“On Sunday, the man the robin feeds” compared to “On Sunday, the man feeds the robin), 

examining the size of the semantic update at the highlighted position, where the standard 

word-order is violated. We found that, if anything, SU was actually slightly larger in the 

condition with the normal as compared to the changed word order (please see Fig. 4 and 

Supplementary Fig. 3; significant over models but not items). This is because changes in word 

order also entail changes in the amount of information a word provides about the event being 

described; it turns out that the amount of semantic update was on average slightly larger in the 

sentences with normal compared to changed word order (see online methods for details).  

 

Figure 4. Simulation of the influence of a change in normal word order. Change, changed 
word order; control, normal word order. Each blue dot represents the results for one 
independent run of the model, averaged across items per condition; the red dots represent the 
means for each condition, and red error bars represent +/- SEM. Semantic update was 
slightly larger for normal compared to changed word order; the main effect was significant 
over models, t1(9) = 5.94 , p < .001, but not over items, t2(9) = 1.56, p = .14. 
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Supplementary Figure 3. Simulation of the influence of a change in word order (by item). 
Change, changed word order; control, normal word order. Each blue dot represents the 
results for one item, averaged across 10 runs of the model; red dots represent means for each 
condition, and red error bars represent +/- SEM. Statistical results are reported in the 
caption of Fig. 4. 

 

 
Extensions 

 In all of the simulations above, it would have been possible to model the phenomena 

by treating the N400 as a direct reflection of change in estimates of event-feature 

probabilities, rather than as reflecting the update of an implicit internal representation that 

latently represents these estimates in a way that only becomes explicit when queried.  In this 

section, we show that the implicit semantic update (measured at the hidden SG layer) and the 

change in the networks’ explicit estimates of feature probabilities in response to probes 

(measured at the output layer) can pattern differently, with the implicit semantic update 

patterning more closely with the N400, supporting a role for the update of the learned implicit 

representation rather than explicit estimates of event-feature probabilities or objectively true 

probabilities in capturing neural responses (see online methods for details of these measures). 

We then consider how the implicit semantic update can drive connection-based learning in the 

update network, accounting for a final observed pattern of empirical findings.  

Development. N400s change with increasing language experience and over 
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developmental time. The examination of N400 effects in different age groups has shown that 

N400 effects increase with comprehension skills in babies37 but later decrease with age38,39. A 

comparison of the effect of semantic congruity on SU at different points in training shows a 

developmental pattern consistent with these findings (Fig. 5, top, and Supplementary Fig. 4, 

top): the size of the congruity effect on SU first increased and then decreased as training 

proceeded. Interestingly, the decrease in the effect on SU over the second half of training was 

accompanied by a continuing increase in the effect of semantic congruity on the change in 

output activation (Fig. 5, bottom, and Supplementary Fig. 4, bottom). The activation pattern at 

the output layer directly reflects explicit estimates of semantic feature probabilities in that 

units at the output layer explicitly specify semantic features, such as for instance “can grow”, 

“can fly” etc., and network error (across the training environment) is minimized when the 

activation of each feature unit in each situation corresponds to the conditional probability of 

this feature in this situation (e.g., an activation state of .7 in a situation where the conditional 

probability of the feature is .7). Thus, in the trained model, changes in output activation 

induced by an incoming word approximate changes in explicit estimates of semantic feature 

probabilities induced by that word. The continuing increase of the congruity effect across 

training displayed at the bottom of Fig. 5 thus shows that changes in explicit estimates of 

semantic feature probabilities do not pattern with the developmental trajectory of N400 

effects. Instead, the change in hidden SG layer activation patterns with the N400 (Fig. 5, top), 

showing that the implicit and ‘hidden’ character of the model’s N400 correlate is crucial to 

account for the empirical data. The decrease in the amount of activation change at the hidden 

SG layer and the corresponding increase in the amount of activation change at the output 

layer over the later phase of learning shows that, as learning proceeds, less change in 

activation at the SG layer is needed to effectively support larger changes in explicit 

probability estimates.  This pattern is possible because, as noted above, the activation pattern 

at the SG layer does not explicitly represent the probabilities of semantic features per se; 
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instead it provides a basis (together with the connection weights in the query network) for 

estimating these probabilities when probed. As connection weights in the query network get 

stronger throughout the course of learning, smaller changes in SG activations become 

sufficient to produce big changes in output activations. This shift of labor from activation to 

connection weights is interesting in that it might underlie the common finding that neural 

activity often decreases as practice leads to increases in speed and accuracy of task 

performance40.  

Figure 5. Development across training. Semantic incongruity effects as a function of the 
number of sentences the model has been exposed to. Top. Semantic update at the model’s 
hidden Sentence Gestalt layer shows at first an increase and later a decrease with additional 
training, in line with the developmental trajectory of the N400. Each blue dot represents the 
results for one independent run of the model, averaged across items per condition; the red 
dots represent the means for each condition, and red error bars represent +/- SEM. The size 
of the effect (i.e. the numerical difference between the congruent and incongruent condition) 
differed between all subsequent time points: t1(9) = 17.02, p < .0001, t2(9) = 6.94, p < .001 
between 10000 and 100000 sentences; t1(9) = 7.80, p < .001, t2(9) = 10.05, p < .0001 between 
100000 and 200000 sentences; t1(9) = 14.69, p < .0001, t2(9) = 6.87, p < .001 between 200000 
and 400000 sentences; t1(9) = 7.70, p < .001, t2(9) = 3.70, p < .05 between 400000 and 800000 
sentences. Bottom. Activation update at the output layer steadily increases with additional 
training, reflecting closer and closer approximation to the true conditional probability 
distributions embodied in the training corpus.  
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Supplementary Figure 4. Development across training (by item). Semantic incongruity 
effects as a function of the number of sentences the model has been exposed to. Top. Semantic 
update at the model’s hidden Sentence Gestalt layer shows at first an increase and later a 
decrease with additional training, in line with the developmental trajectory of the N400. Each 
blue dot represents the results for one item, averaged across 10 independent runs of the 
model; the red dots represent the means for each condition, and red error bars represent +/- 
SEM. Statistical results are reported in the caption of Fig. 5 in the main text. Bottom. 
Activation update at the output layer steadily increases with additional training, reflecting 
closer and closer approximation to the true conditional probability distributions embodied in 
the training corpus.  

 

Early sensitivity to a new language. A second language learning study showed robust 

influences of semantic priming on N400s while overt lexical decision performance in the 

newly trained language was still near chance41. We leave it to future work to do full justice to 

the complexity of second language learning, but as a first approximation we tested the model 

at a very early stage in training (Fig. 6a). Even at this early stage, SU was significantly 

influenced by semantic priming, associative priming, and semantic congruity in sentences 

(Fig. 6b and Supplementary Fig. 5) while overt estimates of feature probabilities were only 

weakly modulated by the words presented. 
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Figure 6. Comprehension performance and semantic update effects at a very early stage in 
training. Cong., congruent; incong., incongruent.  a. Activation of selected output units while 
the model is presented with the sentence “The man plays chess.”. It can be seen that the 
model fails to activate the corresponding units at the output layer. The only thing that it has 
apparently learned at this point is which concepts correspond to possible agents, and it 
activates those in a way that is sensitive to their base rate frequencies (in the model’s 
environment, woman and man are more frequent than girl and boy; see online methods), and 
with a beginning tendency to activate the correct agent (“man”) most. b. Even at this low 
level of performance, there are robust effects of associative priming (t1(9) = 6.12, p < .001, 
t2(9) = 7.31, p < .0001, top), semantic congruity in sentences (t1(9) = 6.85, p < .0001, t2(9) = 
5.74, p < .001, middle), and semantic priming (t1(9) = 5.39, p < .001, t2(9) = 3.79, p < .01, 
bottom), on the size of the semantic update, the model’s N400 correlate. Each blue dot 
represents the results for one independent run of the model, averaged across items per 
condition; the red dots represent the means for each condition, and red error bars represent 
+/- SEM. 
 
Supplementary Figure 5 (see next page). Comprehension performance and semantic update 
effects at a very early stage in training (by item). Cong., congruent; incong., incongruent. 
Even at a low level of performance (see Fig. 5a in the main text for illustration), there are 
robust effects of associative priming (top), semantic congruity in sentences (middle), and 
semantic priming (bottom). Here, each blue dot represents the results for one item, averaged 
across ten independent runs of the model; the red dots represent the means for each 
condition, and red error bars represent +/- SEM. Statistical results are reported in the 
caption of Fig. 6 in the main text. 
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The relationship between activation update and adaptation in a predictive system. The 

change induced by the next incoming word that we suggest underlies N400 amplitudes can be 

seen as reflecting the ‘error’ (difference or divergence) between the model’s implicit 

probability estimate based on the previous word, and the updated estimate based on the next 

word in the sentence (see online methods for details). If the estimate after word n is viewed as 

a prediction, then this difference can be viewed as a kind of prediction error.  It is often 

assumed that learning is based on such temporal difference or prediction errors42–44 so that if 

N400 amplitudes reflect the update of a probabilistic representation of meaning, then larger 

N400s should be related to greater adaptation, i.e., larger adjustments to future estimates.  

Here we implement this idea, using the semantic update to drive learning: The SG layer 

activation at the next word serves as the target for the SG layer activation at the current word, 



 26

so that the error signal that we back-propagate through the network to drive the adaptation of 

connection weights after each presented word becomes the difference in SG layer activation 

between the current and the next word, i.e. SGn+1 – SGn (see online methods for more details). 

Importantly, this allows the model to learn just from listening or reading, when no separate 

event description is provided.  We then used this approach to simulate the finding that the 

effect of semantic incongruity on N400s is reduced by repetition: the first presentation of an 

incongruent completion, which induces larger semantic update compared to a congruent 

completion, leads to stronger adaptation, as reflected in a larger reduction in the N400 during 

a delayed repetition compared to the congruent continuation45.    

To simulate the observed interaction between repetition and semantic incongruity, we 

presented a set of congruent and incongruent sentences a first time, adapting the weights in 

the update network using the temporal difference signal on the SG layer to drive learning. We 

then presented all sentences a second time.  Using this approach, we captured the greater 

reduction in the N400 with repetition of incongruent compared to congruent sentence 

completions (Fig. 7 and Supplementary Fig. 6). Notably, the summed magnitude of the signal 

that drives learning corresponds exactly to our N400 correlate, highlighting the relationship 

between semantic update, prediction error, and experience-driven learning. Thus, our account 

predicts that in general, larger N400s should induce stronger adaptation. Though further 

investigation is needed, there is some evidence consistent with this prediction: larger N400s to 

single word presentations during a study phase have been shown to predict enhanced implicit 

memory (measured by stem completion in the absence of explicit memory) during test46. 
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Figure 7. Simulation of the interaction between delayed repetition and semantic incongruity. 
Cong., congruent; incong., incongruent; rep., repeated. Each red or green dot represents the 
results for one independent run of the model, averaged across items per condition; the blue 
dots represent the means for each condition, and blue error bars represent +/- SEM. There 
were significant main effects of congruity, F1(1,9) = 214.13, p < .0001, F2(1,9) = 115.66, p < 
.0001, and repetition, F1(1,9) = 48.47, p < .0001, F2(1,9) = 109.78, p < .0001, and a 
significant interaction between both factors, F1(1,9) = 83.30, p < .0001, F2(1,9) = 120.86, p 
< .0001; post-hoc comparisons showed that even though the repetition effect was larger for 
incongruent as compared to congruent sentence completions, it was significant in both 
conditions, t1(9) = 4.21, p < .01, t2(9) = 6.90, p < .0001, for the congruent completions, and 
t1(9) = 8.78, p < .0001, t2(9) = 12.02, p < .0001, for the incongruent completions.  
 
 

 

Supplementary Figure 6. Simulation of the interaction between delayed repetition and 
semantic incongruity (by item). Each red or green dot represents the results for one item, 
averaged across 10 runs of the model; blue dots represent means for each condition, and blue 
error bars represent +/- SEM. Statistical results are reported in the caption of Fig. 7. 
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Discussion 

The N400 ERP component is widely used to investigate the neurocognitive processes 

underlying the processing of meaning in language. As noted above, attempts to understand the 

factors that affect the N400 in terms of verbally formulated descriptive accounts grounded (at 

least in part) in traditional theories of language processing8,10,11 have not fully succeeded in 

providing an adequate characterization of its functional basis. In the simulations presented 

above, we have shown that an implemented computational model that is grounded in an 

alternative approach to the nature of the language understanding process can provide a unified 

account that captures a wide range of findings (Table 1). The model treats N400 amplitudes as 

indexing the change induced by an incoming word in an implicit probabilistic representation 

of meaning in a neural network model that does not implement any of the existing descriptive 

accounts. The distinctive characteristics of the model that were described in the introduction 

are essential to its ability to account for the findings we have considered, as we explain below. 

First, our model does not assume separate stages of lexical access/retrieval of word 

meanings and subsequent integration into a compositional representation. This is crucial 

because the two most prominent competing theories of the N400’s functional basis suggest 

that N400 amplitudes reflect either lexical access3 or integration (also referred to as 

unification) into a compositional (sometimes called combinatorial) representation of the 

meaning of the sentence 6,7. In the SG model, incoming stimuli instead serve as ‘cues to 

meaning’47 which automatically change an activation pattern that implicitly represents 

conditional probabilities of all aspects of meaning. Our account is similar to the lexical access 

perspective in that the process is assumed to be fast, automatic, and implicit, but differs from 

this view in that the resulting activation pattern represents not just the currently incoming 

word but instead corresponds to an updated implicit representation of the event being 

described by the sentence. In this regard our account is similar to the integration view in that 
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the resulting activation state is assumed to represent all aspects of meaning of the described 

event (including – though this aspect is not currently implemented – input from other 

modalities), though it differs from such accounts in avoiding a commitment to explicit 

compositional representation.  Our perspective seems in line with a recent comprehensive 

review on the N400 ERP component2 which concluded that the N400 “does not readily map 

onto specific subprocesses posited in traditional frameworks” (p. 639) and that therefore none 

of the available accounts of N400 amplitudes - proposing functional localizations at some 

specific point along a processing stream from prelexical analysis over lexical processing to 

word recognition, semantic access, and semantic integration - could explain the full range of 

N400 data. Instead, the authors suggest that N400 amplitudes might best be understood as a 

“temporally delimited electrical snapshot of the intersection of a feedforward flow of 

stimulus-driven activity with a state of the distributed, dynamically active neural landscape 

that is semantic memory.” (p. 641). Crucially, the SG model provides a computationally 

explicit account of the nature and role of this distributed activation state and how it changes 

through stimulus-driven activity as meaning is dynamically constructed during 

comprehension. Because the model uses incoming words as cues to semantic event features 

instead of linguistic representations in which words are placed into specific syntactic roles, it 

does not predict an N400 response to reversal anomalies (Fig. 2i & Supplementary Fig. S2) or 

to violations of word order (Fig. 4). 

Second, the model does not specify a specific structure of the model’s internal 

representations.  Instead the representations result from a learning process and thus depend on 

the statistical regularities in the model’s environment as well the amount of training the model 

has received, allowing it to account for the pattern of N400 effects across development (Fig. 

5) including N400 effects while behavioral performance is still near chance (Fig. 6) as well as 

the influence of relatively long-term repetition on N400 congruity effects (Fig. 7). 
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Third, the model updates its activation pattern upon the presentation of any word, 

allowing it to capture N400 effects for single words (i.e., frequency effects; see Fig. 2e) and 

words presented in pairs (influences of repetition, Fig. 2h, semantic priming, Fig. 2f, and 

associative priming, Fig. 2g) as well as words presented in a sentence context (influences of 

semantic congruity, Fig. 2a, cloze probability, Fig. 2b, position in the sentence, Fig. 2c, and 

semantically related incongruity, Fig. 2d).  

Fourth, the N400 as captured by the model is assumed to characterize one specific 

aspect of language comprehension, namely the automatic stimulus-driven update of an initial 

implicit representation of meaning. This characterization is in line with evidence for the 

N400’s anatomical localization in regions involved in semantic representation such as the 

medial temporal gyrus (MTG3) and anterior medial temporal lobe (AMTL48,49). The processes 

underlying the N400 may thus correspond to the type of language processing that has been 

characterized as sometimes shallow50 and “good enough”54 and that is preserved in patients 

with lesions to frontal cortex (specifically left inferior prefrontal cortex, BA47)52,53. Thus, 

activity in temporal lobe regions MTG and AMTL may correspond to immediate, automatic, 

and implicit aspects of sentence processing as captured by the SG model.  In contrast, the left, 

inferior frontal cortex has been proposed to support control processes in comprehension that 

are required only when processing demands are high54,55 such as in syntactically complex 

sentences52 which require selection among competing alternatives56. These aspects of 

language comprehension may be reflected in other ERP components as discussed below. 

The pattern of activation in the model’s Sentence Gestalt (SG) layer latently predicts 

the attributes of the entire event described by a sentence, capturing base-rate probabilities 

(before sentence processing begins) and adjusting this pattern of activation as each word of 

the sentence is presented. While in the current implementation of the model, inputs are 

presented over a series of discrete time steps corresponding to each successive word in the 

sentence, this is just a simplification for tractability. We assume that in reality, the adjustment 
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of the semantic activation occurs continuously in time as auditory or visual language input is 

processed, so that the earliest arriving information about a word  (whether auditory or visual) 

immediately influences the evolving SG representation57. This assumption is in line with the 

finding that N400 effects in spoken language comprehension often begin to emerge before the 

spoken word has become acoustically unique58,59. It is important to underline the point that 

this kind of prediction does not refer to the active and intentional prediction of specific items 

but rather to a latent or implicit state such that the model (and presumably the brain) becomes 

tuned through experience to anticipate likely upcoming input to respond to it with little 

additional change. This entails that semantic activation changes induced by new incoming 

input as revealed in the N400 reflect the discrepancy between probabilistically anticipated and 

encountered information about aspects of the state of the world conveyed by the sentence and 

at the same time correspond to the learning signal driving adaptation of connection-based 

knowledge representations. In this sense, our approach, first introduced almost 30 years ago, 

anticipates predictive coding approaches to understanding the dynamics of neural activity 

patterns in the brain 43,60 . Our simulations suggest that the semantic system may not represent 

probabilities of aspects of meaning explicitly but rather uses a summary representation that 

implicitly represents estimates of these probabilities, supporting explicit estimates when 

queried and becoming more and more efficient as learning progresses. 

Recently, other studies have also begun to link the N400 to computational models. 

Most of these have concentrated on words presented singly or after a preceding prime, and 

therefore do not address processing in a sentence context14–16,61. Two modeling studies focus 

on sentence processing. One of these studies observed a correlation between N400s and word 

surprisal as estimated by a simple recurrent network (SRN) trained to predict the next word 

based on the preceding context26.  Because this SRN’s predictions generalize across contexts 

and are mediated by a similarity-based internal representation, it can potentially account for 

effects of semantic similarity on word surprisal, and would thus share some predictions with 
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the SG model.  However, an account of N400s in terms of word surprisal faces some 

difficulties. To demonstrate this, we trained an SRN on the same training corpus as the SG 

model and repeated some of the critical simulations with this SRN (Fig. 8 and Supplementary 

Fig. 7; see online methods for details).  

 

Figure 8. Simulation results from a simple recurrent network model (SRN) trained to predict 
the next word based on the preceding context. Each blue dot represents the results for one 
independent run of the model, averaged across items per condition; the red dots represent the 
means for each condition, and red error bars represent +/- SEM. Top left, semantic illusion: 
t1(9) = 4.55, p < .01, t2(7) = 7.83, p < .001 for the comparison between congruent and illusion 
condition; t1(9) = 12.28, p < .0001, t2(7) = 2.98, p = .062 for the comparison between 
congruent and incongruent condition; t1(9) = 1.52, p = .49, t2(9) = 1.57, p = .48 for the 
comparison between incongruent and illusion condition. Top right, word order: t1(9) = 29.78, 
p < .0001; t2(15) = 6.73, p < .0001. Bottom, congruity effect on surprisal as a function of the 
number of sentences the model has been exposed to: t1(9) =.26, p = 1.0, t2(9) = .15, p = 1.0 for 
the comparison between 10 000 and 100 000 sentences; t1(9) = 6.74, p < .001, t2(9) = 1.08, p = 
1.0 for the comparison between 100 000 and 200 000 sentences; t1(9) = 7.45, p < .001, t2(9) = 
1.78, p = .44 for the comparison between 200 000 and 400 000 sentences; t1(9) = 10.73, p < 
.0001, t2(9) = 1.93, p = .36 for the comparison between 400 000 and 800 000 sentences. 
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Supplementary Figure 7. Simulation results from a simple recurrent network model (SRN) 
trained to predict the next word based on the preceding context. Each blue dot represents the 
results for one item, averaged across 10 runs of the model; red dots represent means for each 
condition, and red error bars represent +/- SEM. Statistical results are reported in the 
caption of Fig. 8. Top left, semantic illusion. Top right, word order. Bottom, congruity effect 
on surprisal as a function of the number of sentences the model has been exposed to.  
 

 

First, word surprisal reflects both semantic and syntactic expectation violations, while 

the N400 is specific to semantic expectations as described above.  Indeed, while SU in the SG 

model was insensitive to changes in word order (Fig. 4 and Supplementary Fig. 3), surprisal 

in the SRN was significantly larger for changed as compared to normal word order (see Fig. 8 

and Supplementary Fig. 7). The lack of specificity of the word surprisal measure converges 

with the finding that the correlation between surprisal in the SRN and N400 observed in the 

above mentioned study 26 was observed only for content words; the SRN surprisal measure 
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when calculated over grammatical function words did not correlate with the N400 responses 

observed on these words. 

Furthermore, the SRN did not account for the decrease of N400 effects with age, 

showing instead a slight increase with additional training (see Fig. 8 and Supplementary Fig. 

7). This is because surprisal is measured in terms of the estimates of word probabilities, which 

become sharper as learning progresses. Finally, the SRN did not produce the small N400 in 

reversal anomalies:  When presented with “At breakfast, the eggs eat…”, word surprisal was 

large, numerically even larger than an incongruent continuation (see Fig. 8 and 

Supplementary Fig. 7) while semantic update in the SG model shows only a very slight 

increase, in line with N400 data32 (see also Supplementary Fig. 8 and the accompanying text 

for relevant results from an SRN trained on a natural corpus by S. Frank (personal 

communication)). 

The other sentence-level model focuses specifically on reversal anomalies, assuming 

separate stages of lexical retrieval and semantic integration 33. This retrieval-integration 

model is computationally explicit while following aspects of the classical framework for 

language processing, in which there is thought to be a distinct lexical-semantic processing 

module in which spreading activation can occur among related items, prior to integrating the 

retrieved word meanings into a compositional representation of sentence meaning9,63. The 

retrieval-integration model makes the further assumption that reversal anomalies such as ‘for 

breakfast the eggs would eat’ must produce a large update in the representation of sentence 

meaning, since the sentence appears to describe an event in which eggs are agents engaged in 

the act of eating. In this model, change in lexical activation (which is small in reversal 

anomalies due to priming, e.g. from breakfast and eggs to eat) is linked to the N400; the 

change in activation representing sentence meaning is assigned to the later, P600 ERP 

component. 
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Supplementary Figure 8. Simulation results from a simple recurrent network (SRN) 
implementation by T. Mikolov62 trained by S. Frank on 23M sentences from a web corpus. 
Incong., incongruent; cong., congruent. The simulation experiment consisted in the 
presentation of materials from the semantic illusion experiment by Kuperberg and 
colleagues32 which we requested from the authors (there are a few slight differences in the 
materials due to an issue with retrieving the original stimuli, but the materials largely overlap 
and resulted in the same pattern of results; G. Kuperberg, personal communication). Each 
blue dot represents the results for one item, averaged over three runs of the model; the red 
dots represent the means for each condition, and red error bars represent +/- SEM. Results 
resemble those from the SRN that we trained on the same corpus as the SG model (Fig. 8 and 
Supplementary Fig. S7) in that word surprisal was large in the semantic illusion condition, 
numerically even larger than in the incongruent condition. There were 3 runs of the model 
and 180 items in each condition (1 less in the incongruent condition because the model did 
not know one of the words in this condition, “curtseys”) so that we report statistical results 
from the item analyses: t2(179) = 11.76, p < .0001, for the comparison between congruent 
condition and semantic illusion; t2(178) = 1.29, p = .59, for the comparison between semantic 
illusion and incongruent condition, and t2(178) =1.45, p= .45, for the comparison between 
congruent and incongruent condition. We thank Stefan Frank for performing the simulation 
and sharing the results with us! 

 

As discussed above, our model accounted for the small size of the N400 in reversal 

anomalies without separate mechanisms for lexical access and semantic interpretation, and 

addresses a wide range of N400 effects which traditional accounts would ascribe either to 

lexical access or to subsequent semantic integration.  Crucially, our model accounts for the 

absence of an N400 in reversal anomalies because such sentences do not trigger a re-

assignment of the role of eggs in a compositional representation of the meaning of the 

sentence; instead the implicit internal representation continues to treat the eggs as having been 
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eaten, consistent with the model’s knowledge of the constraints affecting natural events, in 

which eggs lack attributes that would allow them to serve as agents of eating. 

While both the retrieval-integration model and the SG model account for the absence 

of N400’s in reversal anomalies, the SG model does so within the context of a more complete 

account of the factors that do and do not influence the N400, while the retrieval-integration 

model has yet to be extended beyond accounting for a subset of the relevant findings. Further 

research will be required to determine whether the retrieval-integration model can be 

extended to encompass the range of N400 findings encompassed by the SG model. There are 

also challenges to the view that the P600 should be thought of as reflecting the process of 

semantic integration as it ordinarily occurs in language processing, as we discuss below. 

One basic challenge to the retrieval-integration model’s claim that the P600 reflects 

semantic integration is the fact that many variables that should influence the amount of 

change in a representation of sentence meaning, such as cloze probability or surprise, 

consistently influence N400 but do not necessarily influence P600 amplitudes23,26,64.  Some 

studies report influences of cloze probability on a post N400 positivity64–66, and this finding 

might be taken as consistent with the retrieval-integration model.  However, these influences 

consistently show a frontal topographical distribution, different from the parietal P600 effects 

obtained in reversal anomalies and related materials, leading many researchers to suggest that 

these two ERP positivities reflect functionally distinct processes64. Furthermore, the influence 

of cloze probability on the frontal positivity does not seem to be influenced by degree of 

semantic similarity, as would be expected if it was related to the change in a representation of 

sentence meaning. Instead, the effect is dichotomous, that is, larger for unexpected words 

independent of their semantic similarity with expected words65 which has been taken to 

suggest that the frontal positivity reflects specific lexical predictions. These findings appear to 

challenge any model linking the P600 (without further differentiation) to a change in the 

representation of sentence meaning 33. 
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The functional basis of the late positive ERP components we have described is not 

addressed by our model and requires further investigation to be more fully understood. It is 

true that P600 responses have been observed to a wide range of linguistic violations and 

irregularities, including reversal anomalies32,35, syntactic violations36, and garden path 

sentences67, as well as pragmatic processes (see review68). This has been taken to suggest that 

the P600 might reflect combinatorial aspects of language processing, either related to syntax36 

or to semantic integration as assumed in the retrieval-integration model33. There is, however, 

an alternative perspective, in which the P600 is not treated as specific to language processing 

(either syntactic processes or semantic integration) per se, but to a more general process that 

may be associated with more conscious, deliberate, and effortful aspects of processing which 

may result in adjustments to the initial implicit representation of meaning reflected in the 

N400.  Several researchers have pointed out that the P600 shares properties with the P369,70 

which is elicited by the occurrence of oddball stimuli (such as a rare high tone among much 

more frequent low tones), with the component’s latency depending on stimulus complexity.  

This component is thought to signal an explicit surprise response and a corresponding update 

in working memory71. This P600-as-P3 perspective naturally explains the observed sensitivity 

of P600 effects to task demands and attentional focus. Indeed, P600 effects are strongly 

reduced or absent when there is no active task or when the task is unrelated to the linguistic 

violation72. In contrast, N400 effects can be obtained during passive reading and even during 

unconscious processing such as within the attentional blink73. Thus, from this view, the P600 

differs from the N400 in two ways.  It belongs to a component family that responds to a wider 

range of expectation violations while the N400 is specific to the formation of a representation 

of meaning. Further, the N400 may reflect an automatic and implicit process while the P600 

may be associated with a higher level of control and attention, allowing it to be affected by 

additional constraints that the semantic update process underlying N400 amplitudes misses 
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out on. As noted above, these issues should be investigated in future research to be more fully 

understood. 

In general, the current work opens up an opportunity for extensive further 

investigations, addressing a wide range of behavioral as well as neural aspects of language 

processing. One interesting finding that should be addressed in future work is the finding that 

N400s were influenced by categorical relationship (i.e., semantic priming, see Fig. 2f) while 

being unaffected by sentence truth, at least in negated statements: The N400 is equally small 

in the false sentence “A robin is not a bird” and the true sentence “A robin is a bird”, and is 

equally large in the true sentence “A robin is not a vehicle” and the false sentence “A robin is 

a vehicle” 74. It is important to note that sentence truth is not the same as expected sentence 

meaning, and that to understand the influence of negation on meaning expectations, one needs 

to take into account the pragmatics of negation75,76. Specifically, negation is typically used to 

deny a supposition, and in the absence of discourse context, this supposition must be 

grounded in general knowledge75. Thus, when used in short and isolated sentences, negation 

is typically used to deny something that is part of an invoked schema (e.g., “a whale is not a 

fish”). “Robin” does not invoke a schema which includes semantic features of “vehicle” so 

that “A robin is not a vehicle” is not an expected sentence meaning, even though it is true. On 

the other hand, “robin” does invoke a schema which includes semantic features of “bird” so 

that something that is part of the schema of “bird” might be expected to be denied (e.g., “A 

robin is not a bird that flies south during winter” is fine). Follow-ups taking the pragmatics of 

negation into account and providing more context showed that N400s are indeed modulated 

by sentence truth76 and plausibility75. Our model currently has no experience with sentences 

that describe properties of classes of objects, as sentences like ‘a whale is not a fish’ do, but 

such sentences could be incorporated in an extension of the model, allowing further research 

to investigate whether the pattern of semantic update seen in such sentences can be captured 

by our account of N400 amplitudes as change in a probabilistic representation of meaning.  
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Furthermore, it remains to be explored how well the SG model can predict behavioral 

measures of sentence processing. Given the extensive evidence reviewed above that the 

update of an implicit probabilistic representation of meaning is only one of the processes that 

occur during language processing, it seems likely that a full account of overt behavioral 

responses would require a fuller model capturing these other processes. The beauty of ERPs is 

that they may index distinct aspects of these processes, and can thus speak to their 

neurocognitive reality even though several such processes might jointly influence a specific 

behavioral measure. To fully address behavior, the model will likely need to be integrated into 

a more complete account of the neuro-mechanistic processes that take place during language 

processing, including the more controlled and attention-related processes that may underlie 

the P600. In addition, the model’s query language and training corpus will need to be 

extended to address the full range of relevant phenomena, including other ERP components 

(e.g., orthographic and syntactic ERPs) as well as signals that have been detected using other 

measurement modalities55,77.  

While extending the model will be worthwhile, it nevertheless makes a useful 

contribution to understanding the brain processes underlying language comprehension in its 

current simple form, departing from constructs postulated by traditional language processing 

theories8,10,11 that have lingered on in many previous accounts of the functional basis of the 

N400. The model’s successes in capturing a diverse body of empirically observed neural 

responses suggest that the principles of semantic representation and processing it embodies 

may capture essential aspects of human language comprehension. 
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Online Methods 
 
 

We begin by describing the implicit probabilistic theory of meaning underlying the 

Sentence Gestalt (SG) model and relate the updates in the model to other probabilistic 

measures of surprise.  Next we describe the new semantic update driven learning rule used in 

simulating the reduction in the incongruity effect due to repetition.  We then provide details 

on the model’s training environment as well as the protocols used for training the model and 

for the simulations of empirical findings. Finally, we describe simulations conducted with an 

SRN. Figure 1 in the main text presents the SG network architecture and the processing flow 

in the model. 

Implicit probabilistic theory of meaning 

The theory of meaning embodied in the Sentence Gestalt model holds that sentences 

constrain an implicit probabilistic representation of the meanings speakers intend to convey 

through these sentences.  The representation is implicit in that no specific form for the 

representation is prescribed, nor are - in the general form of the theory - specific bounds set 

on the content of the representation of meaning. In any specific implementation of the theory, 

the content of the representation of meaning is prescribed by the range of possible probes and 

queries, which in the case of our implementation correspond to the vectors encoding the pairs 

of thematic roles and their fillers. Sentences are viewed as conveying information about 

situations or events, and a representation of meaning is treated as a representation that 

provides the comprehender with a basis for estimating the probabilities of aspects of the 

situation or event the sentence describes. To capture this we characterize the ensemble of 

aspects as an ensemble of queries about the event, with each query associated with an 

ensemble of possible responses. The query-answer form is used instead of directly providing 

the complete event description at the output layer to keep the set of probes and fillers more 

open-ended and to suggest the broader framework that the task of sentence comprehension 
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consists in building internal representations that can be used as a basis to respond to probes12. 

In the general form of the theory, the queries could range widely in nature and scope 

(encompassing, for example, whatever the comprehender should expect to observe via any 

sense modality or subsequent linguistic input, given the input received so far).  In 

implementations to date, at least four different query formats have been considered13,78,79, 

including a natural language-based question and answer format (Fincham & McClelland, 

1997, Abstract). Queries may also vary in their probability of being posed (hereafter called 

demand probability), and the correct answer to a particular query may be uncertain, since 

sentences may be ambiguous, vague or incomplete. A key tenet of the theory is that aspects of 

meaning can often be estimated without being explicitly described in a sentence, due to 

knowledge acquired through past experience13.  If events involving cutting steak usually 

involve a knife, the knife would be understood, even without ever having been explicitly 

mentioned in a sentence. 

The theory envisions that sentences are uttered in situations where information about 

the expected responses to a probabilistic sample of queries is often available to constrain 

learning about the meaning of the sentence.  When such information is available, the learner 

is thought to be (implicitly) engaged in attempting to use the representation derived from 

listening to the sentence to anticipate the expected responses to these queries and to use the 

actual responses provided with the queries to bring the estimates of the probabilities of these 

responses in line with their probabilities in the environment.  This process is thought to occur 

in real time as the sentence unfolds; for simplicity it is modeled as occurring word by word as 

the sentence is heard.   

As an example, consider the sequence of words ‘The man eats’ and the query, ‘What 

does he eat’?  What the theory assumes is that the environment specifies a probability 

distribution over the possible answers to this and many other questions, and the goal of 



 42

learning is to form a representation that allows the comprehender to match this probability 

distribution. 

 More formally, the learning environment is treated as producing sentence-event-

description pairs according to a probabilistic generative model.  The sentence consists of a 

sequence of words, while the event-description consists of a set of queries and associated 

responses. Each such pair is called an example. The words in the sentence are presented to the 

neural network in sequence, and after each word, the system can be probed for its response to 

each query, which is conditional on the words presented so far (we use wn to denote the 

sequence of words up to and including word n). The goal of learning is to minimize the 

expected value over the distribution of examples of a probabilistic measure (the Kullback-

Leibler divergence, DKL) of the difference between the distribution of probabilities p over 

possible responses r to each possible query and the model’s estimates � of the distribution of 

these probabilities, summed over all of the queries q occurring after each word, and over all of 

the words in the sentence. In this sum, the contribution of each query is weighed by its 

demand probability conditional on the words seen so far, represented p(q|wn). We call this the 

expected value E of the summed divergence measure, written as: 

� ����(�|
�)�� ���(�(�|�, 
�)||�(�|�, 
�))� 

 In this expression the divergence for each query, DKL(p(r|q,wn)||ρ(r|q,wn)), is given by 

��(�|�, 
�) log !�(�|�, 
�)�(�|�, 
�)"#  

It is useful to view each combination of a query q and sequence of words wn as a context, 

henceforth called C. The sequence of words ‘the man eats’ and the query ‘what does he eat?’ 

is an example of one such context.  To simplify our notation, we will consider each 

combination of q and wn as a context C, so that the divergence in context C, written DKL(C), is 

∑ �(�|%) log &'(#|())(#|()*# .  Note that DKL(C) equals 0 when the estimates match the probabilities 
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(that is, when p(r|C) = ρ(r|C) for all r) in context C, since log(x/x) = log(1) = 0.  Furthermore, 

the expected value of the summed divergence measure is 0 if the estimates match the 

probabilities for all C.   

 Because the real learning environment is rich and probabilistic, the number of possible 

sentences that may occur in the environment is indefinite, and it would not in general be 

possible to represent the estimates of the conditional probabilities explicitly (e.g. by listing 

them in a table).  A neural network solves this problem by providing a mechanism that can 

process any sequence of words and associated queries that are within the scope of its 

environment, allowing it to generate appropriate estimates in response to queries about 

sentences it has never seen before13. 

 Learning occurs from observed examples by stochastic gradient descent:  A training 

example consisting of a sentence and a corresponding set of query-response pairs is drawn 

from the environment.  Then, after each word of the sentence is presented, each of the queries 

is presented along with the response that is paired with it in the example. This response is 

treated as the target for learning, and the model adjusts its weights to increase its probability 

of giving this response under these circumstances.  This procedure tends to minimize the 

expected value of the summed divergence measure over the environment, though the model’s 

estimates will vary around the true values in practice as long as a non-zero learning rate is 

used.  In that case the network will be sensitive to recent history and can gradually change its 

estimates if there is a shift in the probabilities of events in the environment. 

The implemented query-answer format and standard network learning rule 

 In the implementation of the model used here, the queries presented with a given 

training example can be seen as questions about attributes of the possible fillers of each of a 

set of possible roles in the event described by the sentence. There is a probe for each role, 

which can be seen as specifying a set of queries, one for each of the possible attributes of the 

filler of the role in the event. For example, the probe for the agent role can be thought of as 
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asking, in parallel, a set of binary yes-no questions, one about each of several attributes or 

features f of the agent of the sentence, with the possible responses to the question being 1 (for 

yes the feature is present) or 0 (the feature is not present).  For example, one of the features 

specifies whether or not the role filler is male. Letting p(v|f,C) represent the probability that 

the feature has the value v in context C (where now context corresponds to the role being 

probed in the training example after the nth word in the sentence has been presented), the 

divergence can be written as ∑ �(+|,, %) log &'(-|.,())(-|.,()*-/�,0 . Writing the terms of the sum 

explicitly, this becomes �(1|,, %) log &'(�|.,())(�|.,()* + �(0|,, %) log &'(0|.,())(0|.,()*. Using the fact that 

the two possible answers are mutually exclusive and exhaustive, the two probabilities must 

sum to 1, so that p(0|f,C) = 1 – p(1|f,C); and similarly, ρ(0|f,C) = 1 – ρ(1|f,C). Writing p(f|C) 

as shorthand for p(1|f,C) and ρ(f|C) for ρ(1|f,C), and using the fact that log(a/b) = log(a) – 

log(b) for all a,b, the expression for DKL(f,C) becomes 

3�(,|%) log3�(,|%)4 + 31 − 	�(,|%)4 log31 − �(,|%)44	

																																			−3�(,|%) log3�(,|%)4 + (1 − 	�(,|%)) log31 − �(,|%)44  

The first part of this expression contains only environmental probabilities and is 

constant, so that minimizing the expression as a whole is equivalent to minimizing the second 

part, called the cross-entropy CE(f,C) between the true and the estimated probability that the 

value of feature f = 1 in context C: 

%�(,, %) = −3�(,|%) log3�(,|%)4 + (1 − 	�(,|%)) log31 − �(,|%)44 

The goal of learning is then to minimize the sum of this quantity across all features and 

situations. 

The actual value of the feature for a particular role in a randomly sampled training 

example e is either 1 (the filler of the role has the feature) or 0 (the filler does not have the 

feature). This actual value is the target value used in training, and is represented as t(f|Ce), 

where we use Ce to denote the specific instance of this context in the training example (note 
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that the value of a feature depends on the probed role in the training example, but stays 

constant throughout the processing of each of the words in the example sentence). The 

activation a of a unit in the query network in context Ce, a(f|Ce), corresponds to the network’s 

estimate of the probability that the value of this feature is 1 in the given context; we use a 

instead of ρ to call attention to the fact that the probability estimates are represented by unit 

activations. The cross-entropy between the target value for the feature and the probability 

estimate produced by the network in response to the given query after word n then becomes: 

%�(,, %6) = −(7(,|%6) log(
(,|%6)) + (1 − 7(,|%6)) log(1 − 
(,|%6))) 

To see why this expression represents a sample that can be used to estimate CE(f,C) above, it 

is useful to recall that the value of a feature in a given context varies probabilistically across 

training examples presenting this same context. For example, for the context ‘the man eats 

…’, the value of a feature of the filler of the patient role can vary from case to case.  Over the 

ensemble of training examples, the probability that t(f|Ce) = 1 corresponds to p(f|C), so that 

the expected value of t(f|Ce) over a set of such training examples will be p(f|C), and the 

average value of CE(f,Ce) over such instances will approximate CE(f,C). 

 Now, the network uses units whose activation a is given by the logistic function of its 

net input, such that 
 = 1 (1 + 8��69)⁄ , where the net input is the sum of the weighted 

influences of other units projecting to the unit in question, plus its bias term.  As has long 

been known80, the negative of the gradient of this cross-entropy measure with respect to the 

net input to the unit is simply t(f|Ce) – a(f|Ce).  This is the signal back-propagated through the 

network for each feature in each context during standard network training (see section 

simulation details/ training protocol for more detail).    

Probabilistic measures of the surprise produced by the occurrence of a word in a 

sentence 

 Others have proposed probabilistic measures of the surprise produced by perceptual or 

linguistic inputs17,25.  In the framework of our approach to the characterization of sentence 
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meaning, we adapt one of these proposals17, and use it to propose measures of three slightly 

different conceptions of surprise: The normative surprise, the subjective explicit surprise, and 

the implicit surprise – the last of which corresponds closely to the measure we use to model 

the N400. 

 We define the normative surprise (NS) resulting from the occurrence of the nth word 

in a sentence s as the KL divergence between the environmentally determined distribution of 

responses r to the set of demand-weighted queries q before and after the occurrence of word 

wn: 

 

��(
�) = 	��(�|
�)	� �(�|�, 
�)	;<=#|�,>� ! �(�|�, 
�)�(�|�, 
���)" 

 

If one knew the true probabilities, one could calculate the normative surprise and attribute it 

to an ideal observer.  In the case where the queries are binary questions about features as in 

the implemented version of the SG model this expression becomes: 

 

��(
�) = ��(�|
�)	!�(,|�, 
�) log ! �(,|�, 
�)�(,|�, 
���)"�
+ 31 − �(,|�, 
�)4 log ! 1 − �(,|�, 
�)1 − �(,|�, 
���)"" 

To keep this expression simple, we treat q as ranging over the features of the fillers of all 

of the probed roles in the sentence. 

 The explicit subjective surprise ESS treats a human participant or model thereof as 

relying on subjective estimates of the distribution of responses to the set of demand-weighted 

queries.  In the model these are provided by the activations a of the output units 

corresponding to each feature: 
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 Our third measure, the implicit surprise (IS) is a probabilistically interpretable 

measure of the change in the pattern of activation over the learned internal meaning 

representation (corresponding to the SG layer in the model).  Since the unit activations are 

constrained to lie in the interval between 0 and 1, they can be viewed intuitively as 

representing estimates of probabilities of implicit underlying meaning dimensions or 

microfeatures81 that together constrain the model’s estimates of the explicit feature 

probabilities.  In this case we can define the implicit surprise as the summed KL divergence 

between these implicit feature probabilities before and after the occurrence of word n, using 


� to represent the estimate of the probability that the feature characterizes the meaning of the 

sentence and (1 − 
�) to represent the negation of this probability: 

 

?�(
�) = 	�@
�(
�) log @ 
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The actual measure we use for the semantic update (SU) as defined in the main text is similar 

to the above measure in being a measure of the difference or divergence between the 

activation at word n and word n-1, summed over the units in the SG layer: 

 

��(
�) = 	�|
�(
�) −	� 
�(
���)| 
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The SU and IS are highly correlated and have the same minimum (both measures are equal to 

0 when the activations before and after word n are identical). We use the analogous measure 

over the outputs of the query network, called the explicit subjective update (ESU) to compare 

to the SU in the developmental simulation reported in the main text: 

 

���(
�) = 	��(�|
�)	|
(,|�, 
�) − 
(,|�, 
���)|�  

As before we treat q as ranging over all of the features of the fillers of all of the probed 

roles in the sentence.  In calculating the ESU or the ESS, the queries associated with the 

presented sentences are all used, with �(q|
�) = 1 for each one.   

 The simulation results presented in the main text show the same pattern in all cases if 

the ESS and IS are used rather than the SU and ESU. 

Semantic update driven learning rule 

The semantic update driven learning rule introduced in this article for the Sentence 

Gestalt model is motivated by the idea that later-coming words in a sentence provide 

information that can be used to teach the network to optimize the probabilistic representation 

of sentence meaning it derives from words coming earlier in the sentence.  We briefly 

consider how this idea could be applied to generate signals for driving learning in the query 

network, in a situation where the teaching signal (in the form of a set of queries and 

corresponding feature values) corresponding to the actual features of an event are available to 

the model only after the presentation of the last word of the sentence (designated word N).  In 

that situation, the goal of learning for the last word can be treated as the goal of minimizing 

the KL divergence between the outputs of the query network after word N and the target 

values of the features of the event t(f|q,e). As in the standard learning rule, this reduces to the 

cross-entropy, which for a single feature is given by 
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A single {sentence, event} pair chosen from the environment would then provide a 

sample from this distribution.  As is the case in the standard training regime, the negative of 

the gradient with respect to the net input to a given output feature unit in the query network 

after a given probe is simply 7(,|�, 8) − 
(,|�, 
B). This is then the error signal propagated 

back through the network. To train the network to make better estimates of the feature 

probabilities from the next to last word in the sentence (word N-1), we can use the difference 

between the activations of the output units after word N as the teaching signal for word N-1, 

so for a given feature unit the estimate of the gradient with respect to its net input simply 

becomes 
(,|�, 
B) − 
(,|�, 
B��). Using this approach, as a(f|q,wN) comes to approximate 

t(f|q,e) it thereby comes to approximate the correct target for a(f|q, N-1). This cycle repeats 

for earlier words, so that as a(f|q, N-1) comes to approximate a(f|q, N) and therefore t(f|q, e) it 

also comes to approximate the correct teacher for a(f|q, N-2), etc. This approach is similar to 

the temporal difference (TD) learning method used in reinforcement learning82 in situations 

where reward becomes available only at the end of an episode, except that here we would be 

learning the estimates of the probabilities for all of the queries rather than a single estimate of 

the final reward at the end of an episode.  This method is known to be slow and can be 

unstable, but it could be used in combination with learning based on episodes in which 

teaching information is available throughout the processing of the sentence, as in the standard 

learning rule for the SG model. 

 The semantic update based learning rule we propose extends the idea described above, 

based on the observation that the pattern of activation over the SG layer of the update network 

serves as the input pattern that allows the query network to produce estimates of probabilities 

of alternative possible responses to queries after it has seen some or all of the words in a 

sentence. Consider for the moment an ideally trained network in which the presentation of 
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each word produces the optimal update to the SG representation based on the environment it 

had been trained on so far, so that the activations at the output of the query network would 

correspond exactly to the correct probability estimates.  Then using the SG representation 

after word n+1 as the target for training the SG representation after word n would allow the 

network to update its implicit representation based on word n to capture changes in the 

environmental probabilities as these might be conveyed in a sentence.  More formally, we 

propose that changing the weights in the update network to minimize the Implicit Surprise 

allows the network to make an approximate update to its implicit probabilistic model of 

sentence meaning, providing a way for the network to learn from linguistic input alone.  The 

negative of the gradient of the Implicit Surprise with respect to the net input to SG unit i after 

word n is given by 
�(
�) − 
�(
���).  This is therefore the signal that we back propagate 

through the update network to train the connections during implicit temporal difference 

learning.  As noted in the main text, the sum over the SG units of the absolute value of this 

quantity also corresponds to the SU, our model’s N400 correlate. The model would not be 

able to learn language based on this semantic update driven learning rule alone. We assume 

that language learning proceeds by a mixture of experience with language processed in the 

context of observed events (as in the standard training regime) and processed in isolation (as 

with the semantic update driven learning rule), possibly with changing proportions across 

development. Future modeling work should explore this issue in more detail. 

 
Simulation Details 

 Environment. The model environment consists of {sentence, event} pairs 

probabilistically generated online during training according to constraints embodied in a 

simple generative model (see Fig. 9a). The sentences are single clause sentences such as “At 

breakfast, the man eats eggs in the kitchen”.  
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Figure 9. a. The sentence/ event generator used to train the model. Bar width corresponds to 
relative probability. First, one out of twelve actions is chosen with equal probability. Then, 
for every action except one (“look at”) an agent is chosen (“woman” and “man” each with a 
probability of .4, “boy” and “girl” with a probability of .1). Next, a situation is chosen 
depending on the action. Some actions can occur in two possible situations, some in one, and 
some without a specified situation. Even if an action occurs in a specific situation, the 
corresponding word is presented only with a probability of .5 in the sentence while the 
situation is always part of the event representation. Then, depending on the action (and in the 
case that an action can occur in two possible situations, depending on the situation) an 
object/patient is chosen. For each action or situation (except for “like” and “look at” for 
which all 36 objects are chosen equally often) there is a high probability and a low 
probability object (if the agent is “man” or “woman”, the respective high/low probabilities 
are .7/.3, if the agent is “girl” or “boy”, the probabilities are .6/.4). The high and low 
probability objects occurring in the same specific action context are always from the same 
semantic category, and for each category, there is a third object which is never presented in 
that action context and instead only occurs in the unspecific “like” or “look at” contexts (to 
enable the simulation of categorically related incongruities; these are the twelve rightmost 
objects in the figure; here bar width is larger than probability to maintain readability). 
Possible sentence structures are displayed below. b. Similarity matrices of the hand-crafted 
semantic representations used for the current model (left) and representations based on a 
principal component analysis on word vectors derived from co-occurrences in large text 
corpora83. The correlation between the matrices is r = .73. 
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They are stripped of articles as well as inflectional markers of tense, aspect, and number, and 

are presented as a sequence of constituents, each consisting of a content word and possibly 

one closed class word such as a preposition or passive marker. A single input unit is dedicated 

to each word in the model’s vocabulary.  In the example above, the constituents are “at 

breakfast”, “man”, “eats”, “eggs”, “in kitchen”, and presentation of the first constituent 

corresponds to activating the input units for “at” and “breakfast”. 

The events are characterized as sets of role filler pairs, in this case: agent – man, action 

– eat, patient – eggs, location – kitchen, situation - breakfast. Each thematic role is 

represented by a single unit at the probe and output layer. For the filler concepts, we used 

feature-based semantic representations such that each concept was represented by a number of 

units (at the probe and output layer) each corresponding to a semantic feature. For instance, 

the concept “daisy” was represented by five units.  The units have labels that allow the reader 

to keep track of their roles but the model is not affected by the labels themselves, only by the 

similarity relationships induced by these labels.  For example, the semantic features of 

“daisy” are labeled “can grow”, “has roots”, “has petals”, “yellow”, and “daisy”. The feature-

based representations were handcrafted to create graded similarities between concepts roughly 

corresponding to real world similarities as in other models of semantic representation84,85. For 

instance, all living things shared a semantic feature (“can grow”), all plants shared an 

additional feature (“has roots”), all flowers shared one more feature (“has petals”) and then 

the daisy had two individuating features (“yellow” and its name “daisy”) so that the daisy and 

the rose shared three of their five semantic features, the daisy and the pine shared two 

features, the daisy and the salmon shared only one feature, and the daisy and the email did not 

share any features (see the Supplementary Table 1 for a complete list of concepts and 

features). Comparison of a similarity matrix of the concepts based on our hand-crafted 

semantic representations and representations based on a principal component analysis (PCA) 

performed on semantic word vectors derived from co-occurrences in large text corpora83 
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showed a reasonable correspondence (r = .73; see Fig. 9b), suggesting that the similarities 

among the hand-crafted conceptual representations roughly matched real world similarities 

(as far as they can be derived from co-occurrence statistics).  

 Training protocol. The training procedure approximates a situation in which a 

language learner has observed an event and thus has a complete representation of the event 

available, and then hears a sentence about it so that learning can be based on a comparison of 

the current output of the comprehension mechanism and the event. It is important to note that 

this is not meant to be a principled theoretical assumption but is rather just a practical 

consequence of the training approach. In general, we do not assume that listeners can only 

learn when they simultaneously experience a described event, first, because neural networks 

can generalize12 and second, because the SG model can also learn simply from listening or 

reading based on the new learning rule driven by the semantic update (see section Semantic 

update driven learning rule, above). Also, observed events can be ambiguous and language 

can provide a particular disambiguating perspective on an event that cannot be gleaned 

directly from the event itself86. The SG model implements a simplification of the situation in 

the sense that events in the model are always unambiguous and complete. In addition, the 

training procedure implements the assumption that listeners anticipate the full meaning of 

each presented sentence as early as possible87,88, so that the model can learn to 

probabilistically preactivate the semantic features of all role fillers involved in the described 

event based on the statistical regularities in its environment. 

Each training trial consists in randomly generating a new {sentence, event} pair based 

on the simple generative model depicted in Fig. 9a, and then going through the following 

steps: At the beginning of a sentence, all units are set to 0. Then, for each constituent of the 

sentence, the input unit or units representing the constituent are turned on and activation flows 

from the input units and – at the same time via recurrent connections - from the SG units to 

the units in the first hidden layer (Hidden 1), and from these to the units in the SG layer where 
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the previous representation (initially all 0’s) is replaced by a new activation pattern which 

reflects the influence of the current constituent. The activation pattern at the SG layer is then 

frozen while the model is probed concerning the event described by the sentence in the query 

part of the model. Specifically, for each probe question, a unit (representing a thematic role) 

or units (corresponding to feature-based representations of fillers concepts) at the probe layer 

are activated and feed into the hidden layer (Hidden 2) which at the same time receives 

activation from the SG layer. Activation from the SG and the probe layer combine and feed 

into the output layer where the units representing the complete role-filler pair (i.e., the unit 

representing the thematic role and the units corresponding to the feature-based representation 

of the filler concept) should be activated. After each presented constituent, the model is 

probed once for the filler of each role and once for the role of each filler involved in the 

described event, and for each response, the model’s activation at the output layer is compared 

with the correct output. After each response, the gradient of the cross-entropy error measure 

for each connection weight and bias term in the query network is back-propagated through 

this part of the network, and the corresponding weights and biases are adjusted accordingly. 

At the SG layer, the gradient of the cross-entropy error measure for each connection weight 

and bias term in the update network is collected for the responses on all the probes for each 

constituent before being back-propagated through this part of the network and adjusting the 

corresponding weights and biases. We used a learning rate of 0.00001 and momentum of 0.9 

throughout. 

 Simulation of empirical findings. Because the model’s implicit probabilistic 

representation of meaning and thus also the semantic update at any given point is determined 

by the statistical regularities in the training set, in the description of the simulations below we 

try to make clear how the observed effects depend on the training corpus (please refer to Fig. 

7a). 

For the simulations of semantic incongruity, cloze probability, and categorically 
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related semantic incongruity, for each condition one agent (“man”) was presented once with 

each of the ten specific actions (excluding only “like” and “look at”). The agent was not 

varied because the conditional probabilities for the later sentence constituents depend very 

little on the agents (the only effect of the choice of agent is that the manipulation of cloze 

probability is stronger for “man” and “woman”, namely .7 vs. .3, than for “girl” and “boy”, 

namely .6 vs. .4; see Fig. 7a). For the simulation of semantic incongruity, the objects were the 

high probability objects in the congruent condition (e.g., “The man plays chess.”) and 

unrelated objects in the incongruent condition (e.g., “The man plays salmon”). For the 

simulation of cloze probability, the objects/patients were the high probability objects in the 

high cloze condition (e.g., “The man plays chess.”) and the low probability objects in the low 

cloze condition (e.g., “The man plays monopoly.”). For the simulation of categorically related 

semantic incongruities, the congruent and incongruent conditions from the semantic 

incongruity simulation were kept the same and there was an additional condition where the 

objects were from the same semantic category as the high and low probability objects related 

to the action (and thus shared semantic features at the output layer, e.g., “The man plays 

backgammon”), but were never presented as patients of that specific action during training (so 

that their conditional probability to complete the presented sentence beginnings was 0). 

Instead, these objects only occurred as patients of the unspecific “like” and “look at” actions 

(Fig. 7a). For all these simulations, there were 10 items in each condition, and semantic 

update was computed based on the difference in SG layer activation between the presentation 

of the action (word n-1) and the object (word n). 

For the simulation of the influence of a word’s position in the sentence, we presented 

the longest possible sentences, i.e. all sentences that had occurred during training with a 

situation and a location, including both the version with the high probability ending and the 

version with the low probability ending of these sentences. There were 12 items in each 
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condition, and semantic update was computed over the course of the sentences, i.e. the 

difference in SG layer activation between the first and the second word provided the basis for 

semantic update induced by the second word (the agent), the difference in SG layer activation 

between the second and the third word provided the basis for semantic update induced by the 

third word (the action), the difference in SG layer activation between the third and the fourth 

word provided the basis for semantic update induced by the fourth word (the object/ patient), 

and the difference in SG layer activation between the fourth and the fifth word provided the 

basis for semantic update induced by the fifth word (the location). It is interesting to consider 

the conditional probabilities of the constituents over the course of the sentence: Given a 

specific situation, the conditional probability of the presented agent (“man”; at the second 

position in the sentence) is .36 (because the conditional probability of that agent is overall .4, 

and the probability of the sentence being an active sentence such that the agent occurs in the 

second position is .9; see Fig. 7a). The conditional probability of the action (at the third 

position) is 1 because the actions are determined by the situations (see section on reversal 

anomalies, below, for the rationale behind this predictive relationship between the situation 

and the action). The conditional probability of the objects (at the fourth position) is either .7 

(for high probability objects) or .3 (for low probability objects) so that it is .5 on average, and 

the conditional probability of the location (at the fifth position) is 1 because the locations are 

determined by the objects. Thus, the constituents’ conditional probabilities do not gradually 

decrease across the course of the sentences. The finding that semantic update nonetheless 

gradually decreased over successive words in these sentences (see Results) suggests that the 

SG layer activation does not perfectly track conditional probabilities. Even if an incoming 

word can be predicted with a probability of 1.0 so that an ideal observer could in principle 

have no residual uncertainty, the presentation of the item itself still produces some update, 

indicating that the model retains a degree of uncertainty, consistent with the ‘noisy channel’ 

model89.  In this situation, as we should expect, the SG anticipates the presentation of the item 
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more strongly as additional confirmatory evidence is accumulated, so that later perfectly 

predictable constituents are more strongly anticipated than earlier ones.  In summary, the 

model’s predictions reflect accumulation of predictive influences, rather than completely 

perfect instantaneous sensitivity to probabilistic constraints in the corpus. 

For the simulation of lexical frequency, the high frequency condition comprised the 

high probability objects from the ten semantic categories, the two high probability agents 

(“woman” and “man”) and two high probability locations (“kitchen” and “living room”). The 

low frequency condition contained the ten low probability objects, the two low probability 

agents (“girl” and “boy”) and two low probability locations (“balcony” and “veranda”). The 

high and low frequency locations were matched pairwise in terms of the number and diversity 

of object patients they are related to (“kitchen” matched with “balcony”, “living room” 

matched with “veranda”). Before presenting the high versus low frequency words, we 

presented a blank stimulus to the network (i.e., an input pattern consisting of all 0) to evoke 

the model’s default activation which reflects the encoding of base-rate probabilities in the 

model’s connection weights. There were 14 items in each condition, and semantic update was 

computed based on the difference in SG layer activation between the blank stimulus (word n-

1) and the high or low frequency word (word n). 

To simulate semantic priming, for the condition of semantic relatedness, the low and 

high probability objects of each of the ten semantic object categories were presented 

subsequently as prime-target pair (e.g., “monopoly chess”). For the unrelated condition, 

primes and targets from the related pairs were re-assigned such that there was no semantic 

relationship between prime and target (e.g., “sunfish chess”). For the simulation of associative 

priming, the condition of associative relatedness consisted of the ten specific actions as 

primes followed by their high probability patients as targets (e.g., “play chess”). For the 

unrelated condition, primes and targets were again re-assigned such there was no relationship 

between prime and target (e.g., “play eggs”). To simulate repetition priming, the high 
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probability object of each semantic category was presented twice (e.g., “chess chess”). For the 

unrelated condition, instead of the same object, a high probability object from another 

semantic category was presented as prime. For all priming simulations, there were 10 items in 

each condition, and semantic update was computed based on the difference in SG layer 

activation between the prime (word n-1) and the target (word n). 

For the simulation of semantic illusions/ reversal anomalies, each of the eight 

situations was presented, followed by the high probability object related to that situation and 

the action typically performed in that situation (e.g., “At breakfast, the eggs eat…”). For the 

congruent condition, the situations were presented with a possible agent and the action 

typically performed in that situation (e.g., “At breakfast, the man eats…”) and for the 

incongruent condition, with a possible agent and an unrelated action (e.g., “At breakfast, the 

man plants…”). There were eight items in each condition, and semantic update was computed 

based on the difference in SG layer activation between the presentation of the second 

constituent which could be an object or an agent (e.g., “eggs” or “man”; word n-1) and the 

action (word n). Please note that in the model environment, the situations predict specific 

actions with a probability of 1. This prevented the critical words (i.e., the actions) from being 

much better predictable in the reversal anomaly condition where they are preceded by objects 

(which in the model environment also predict specific actions with a probability of 1) as 

compared to the congruent condition where they are preceded by agents (which are not 

predictive of specific actions at all). Of course, situations do not completely determine actions 

in the real world. However, the rationale behind the decision to construct the corpus in that 

way to simulate the reversal anomaly experiment by Kuperberg and colleagues32 was that the 

range of plausibly related actions might be similar for specific situations and specific objects 

such that actions are not much better predictable in the reversal anomaly than in the congruent 

condition. A relevant difference between both conditions was that in the reversal anomaly 

condition the model initially assumed the sentences to be in passive voice, because during 



 59

training, sentences with the objects presented before the actions had always been in passive 

voice (see Fig. 7a). Thus, when the critical word was presented without passive marker (i.e., 

“by”), the model revised its initial assumptions in that regard in the reversal anomaly 

condition while there was no need for revision in the congruent condition. 

We also simulated a second type of semantic illusion where a relationship between 

two noun phrases is established prior to encountering the verb35 (e.g. “De speer heft de atleten 

geworpen”, lit: “The javelin has the athletes thrown”, relative to “De speer werd door de 

atleten geworpen”, lit: “The javelin was by the athletes thrown”). For this simulation we 

presented basically the same stimuli as for the other semantic illusion simulation, but with 

Dutch word order and thus sentence structures relevant to examine whether the same 

mechanism allowing the model to account for the semantic illusion effects reported by 

Kuperberg et al. would also hold when the verb is presented at the end of the sentence. Thus, 

the relevant experimental conditions contained sentences such as “The pine was by the man 

watered.” (i.e., “The pine was watered by the man.” with Dutch word order; congruent 

condition), “The pine has the man watered.” (i.e. “The pine has watered the man.” with Dutch 

word order; semantic illusion/ reversal anomaly condition) and “The pine was by the man 

drunken.” (i.e., “The pine was drunken by the man.” with Dutch word order; incongruent 

condition). To be able to run this simulation, we trained a model on basically the same 

training environment as the other model, but with the sentence structures adjusted such that 

active sentences were changed from e.g., “The man waters the pine.” to “The man has the 

pine watered.” and passive sentences were changed from “The pine was watered by the man.” 

to “The pine was by the man watered.”. We also added an additional input unit representing 

“has” and made “was by” be represented by a single unit because both words now always 

occurred in direct succession (e.g., “… was by the man watered.” instead of “… was watered 

by the man.”). Apart from that, all parameters of the model and training were kept the same. 

This implementation does not completely correspond to the empirical experiment35 in that in 
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our simulation there was no specific relationship between the agent and the action (i.e., the 

man in the model environment is equally likely to perform all 12 actions and thus was equally 

likely to water something as he was to drink something, for instance) while in the stimulus 

material of the empirical experiment there was a specific probabilistic relationship between 

the agents and the actions (i.e., athletes might be more likely to throw something than to 

summarize something). However, important for current purposes, this implementation 

allowed to test whether the way the model accounts for the slight N400 increase in reversal 

anomalies would be robust to changes in word order, i.e. the presentation of two noun phrases 

prior to the presentation of the verb. For the simulation, there were eight items in each 

experimental condition, and semantic update was computed as the difference in SG layer 

activation between the third constituent (“man”, word n-1) and the fourth constituent (the 

action, word n). 

To simulate the developmental trajectory of N400 effects we examined the effect of 

semantic incongruity on semantic update (as described above) at different points in training, 

specifically after exposure to 10000, 100000, 200000, 400000, and 800000 sentences. To 

examine the relation between update at the SG layer and update at the output layer (reflecting 

latent and explicit estimates of semantic feature probabilities, respectively), at each of the 

different points in training (see above) we computed the update of activation at the output 

layer (summed over all role filler pairs) analogously to the activation update at the SG layer.  

To simulate semantic priming effects on N400 amplitudes during near-chance lexical 

decision performance in a second language, we examined the model early in training when it 

had been presented with just 10000 sentences. As illustrated in Figure 5a, at this point the 

model fails to understand words and sentences, i.e. to activate the corresponding units at the 

output layer. The only knowledge that is apparent in the model’s performance at the output 

layer concerns the possible filler concepts for the agent role and their relative frequency, as 

well as a beginning tendency to activate the correct agent slightly more than the others. Given 
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the high base-rate frequencies of the possible agents, it does not seem surprising that the 

model learns this aspect of its environment first. At this stage in training, we simulated 

semantic priming as described above. In addition, even though this has not been done in the 

empirical study, we also simulated associative priming and influences of semantic incongruity 

in sentences (as described above). 

For the simulation of the interaction between semantic incongruity and repetition, all 

sentences from the simulation of semantic incongruity (see above) were presented twice, in 

two successive blocks (i.e., running through the first presentation of all the sentences before 

running through the second presentation) with connection weights being adapted during the 

first round of presentations (learning rate = .01). Sentences were presented in a different 

random order for each model with the restrictions that the presentation order was the same in 

the first and the second block, and that the incongruent and congruent version of each 

sentence directly followed each other. The order of conditions, i.e. whether the incongruent or 

the congruent version of each sentence was presented first was counterbalanced across models 

and items (i.e., for half of the models, the incongruent version was presented first for half of 

the items, and for the other half of the models, the incongruent version was presented first for 

the other half of the items).  

It is often assumed that learning is based on prediction error42–44. Because the SG layer 

activation at any given time represents the model’s implicit prediction or probability estimates 

of the semantic features of all aspects of the event described by a sentence, the change in 

activation induced by the next incoming word can be seen as the prediction error contained in 

the previous representation (at least as far as it is revealed by that next word). Thus, in 

accordance with the widely shared view that prediction errors drive learning, we used a 

temporal difference (TD) learning approach, assuming that in the absence of observed events, 

learning is driven by this prediction error concerning the next internal state. Thus, the SG 

layer activation at the next word serves as the target for the SG layer activation at the current 
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word, so that the error signal becomes the difference in activation between both words, i.e. 

SGn+1 – SGn  (also see section Semantic update driven learning rule, above). There were 10 

items in each condition, and semantic update was computed during the first and second 

presentation of each sentence as the difference in SG layer activation between the 

presentation of the action (word n-1) and the object (word n). 

For the simulation of the influence of violations of word order (phrase structure)36, we 

presented two types of word order changes for each sentence, focusing on sentences starting 

with a situation, because in these sentences it is easier to keep changes in conditional 

probabilities of semantic event features relatively low when changing word order. For each 

sentence, we presented (1) a version where we changed the position of the action and the 

patient (e.g., “On Sunday, the man the robin feeds” compared to “On Sunday, the man feeds 

the robin”; with semantic update computed as the difference in SG layer activation between 

the presentation of the agent (word n-1) and the patient or action, respectively (word n)), and 

(2) a version where we changed the position of the agent and the action (e.g., “On Sunday, 

feeds the man the robin” compared to “On Sunday, the man feeds the robin”; with semantic 

update computed as the difference in SG layer activation between the presentation of the 

situation (word n-1) and the action or agent, respectively (word n)). For type (1), changing 

position of action and patient, the conditional probability of the semantic features associated 

with the critical word (not at this position in the sentence but in general within the described 

event) is .7 in the condition with the changed word order and 1.0 in the condition with the 

normal word order. For type (2), changing position of agent and action, the conditional 

probability of the semantic features associated with the critical word (again, crucially, not at 

this position in the sentence but in general within the described event) is 1.0 in the condition 

with the changed word order and .4 in the condition with the normal word order. Thus, while 

changes in word order also entail changes in the amount of semantic update of event features, 

the design of the simulation ensures that influences of word order (syntax) and semantic 
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update can be dissociated. Specifically, the surprise concerning the semantic features of the 

described event was on average .15 in the condition with the changed word order (.3 for type 

(1) and 0.0 for type (2)) while it was on average .3 in the condition with the normal word 

order (0.0 for type (1), and .6 for type (2)). There were 16 items (8 of each type) in each 

condition (i.e., normal vs. changed word order). 

Simple recurrent network model simulations 

 We trained a classic simple recurrent network90 (consisting of an input and output 

layer with 74 units each, as well as a hidden and context layer with 100 units each) on the 

same training corpus as the SG layer. Except for the architectural difference, all parameters 

were kept the same. We then simulated influences of violations of word order (phrase 

structure), reversal anomalies, and development, as described above for the SG model. The 

measure for surprisal that we set in relation to N400 amplitudes consists in the summed 

magnitude of the cross-entropy error induced by the current word (word n). 

Statistics 

All reported statistical results are based on ten runs of the model each initialized 

independently (with initial weights randomly varying between +/- .05) and trained with 

independently-generated training examples as described in section Simulation Details/ 

Environment (N=800000, unless otherwise indicated). In analogy to subject and item analyses 

in empirical experiments, we performed two types of analyses on each comparison, a model 

analysis with values averaged over items within each condition and the 10 models treated as 

random factor, and an item analysis with values averaged over models and the items (N 

ranging between 8 and 16; please see the previous section for the exact number of items in 

each simulation experiment) treated as random factor. There is much less noise in the 

simulations as compared to empirical experiment such that the relatively small sample size 

(10 runs of the model and 8 to 16 items per condition) should be sufficient. There was no 

blinding. We used two-sided paired t-tests to analyze differences between conditions; when a 
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simulation experiment involved more than one comparison, significance levels were 

Bonferroni-corrected within the simulation experiment. To test for the interaction between 

repetition and congruity, we used a repeated measures analysis of variance (rmANOVA) with 

factors Repetition and Congruity. To analyze whether our data met the normality assumption 

for these parametric tests, we tested differences between conditions (for the t-tests) and 

residuals (for the rmANOVA) for normality with the Shapiro-Wilk test. Using study-wide 

Bonferroni correction to adjust significance levels for the multiple performed tests, results did 

not show significant deviations from normality (all ps > .11 for the model analyses and > .24 

for the item analyses) except for the item analysis of the change in word order (p = .048) 

which might be due to the items in this simulation experiment consisting of two types with 

slightly different characteristics (see section Simulation of empirical findings above); this item 

analysis did not reach significance neither in the t-test (see caption of Fig. 4) nor in the 

Wilcoxon signed rank test (p = .10) which does not depend on the normality assumption. To 

further corroborate our results we additionally tested all comparisons with deviations from 

normality at uncorrected significance levels <.05 using the Wilcoxon signed rank test; all 

results remained significant. Specifically, in the model analyses deviations from normality at 

uncorrected significance levels were detected for the semantic incongruity effect (Fig. 2a; p = 

.043) and the frequency effect (Fig. 2e; p = .044), as well as for the difference between 

categorically related incongruities and congruent completions (Fig. 2d; p = .0053). Wilcoxon 

signed rank tests confirmed significant effects of semantic incongruity (Fig. 2a; p = .002) and 

lexical frequency (Fig. 2e; p = .037), and a significant difference between categorically 

related incongruities and congruent sentence continuations (Fig. 2d; p = .002). In the item 

analyses, deviations from normality at an uncorrected significance level were detected for the 

difference between incongruent completions and semantic illusions in the SG model 

(Supplementary Fig. 1i; p = .012) as well as in the SRN (Supplementary Fig. 7; p = .043), and 

for the difference between changed and normal word order in the SRN (Supplementary Fig. 7; 
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p = .011). Again, Wilcoxon signed rank tests confirmed significant differences between the 

incongruent completions and the semantic illusions in the SG model (Supplementary Fig. 1i; 

p = .0078) and the SRN (Supplementary Fig. 7; p = .039), as well as a significant influence of 

word order in the SRN (p = .0004). 

Using Levene’s test, we detected violations of the assumption of homogeneity of 

variances (required for the rmANOVA used to analyze the interaction between repetition and 

congruity; Fig. 6 and Supplementary Fig. 4) in the item analysis, F2(3) = 12.05, p < .0001, but 

not in the model analysis, F1 < 1. We nonetheless report the ANOVA results for both analyses 

because ANOVAs are typically robust to violations of this assumption as long as the groups 

to be compared are of the same size. However, we additionally corroborated the interaction 

result from the item ANOVA by performing a two-tailed paired t-test on the repetition effects 

in the incongruent versus congruent conditions, i.e. we directly tested the hypothesis that the 

size of the difference in the model’s N400 correlate between the first presentation and the 

repetition was larger for incongruent than for congruent sentence completions: incongruent 

(first – repetition) > congruent (first – repetition). Indeed, the size of the repetition effects 

significantly differed between congruent and incongruent conditions, t2(9) = 10.99, p < .0001, 

and the differences between conditions did not significantly deviate from normality, p = .44, 

thus fulfilling the prerequisites for performing the t-test.  

In general, systematic deviations from normality are unlikely for the results by-model 

(where apparent idiosyncrasies are most probably due to sampling noise), but possible in the 

by-item data. Thus, while we present data averaged over items in the figures in the main text 

in accordance with the common practice in ERP research to analyze data averaged over items, 

for transparency we additionally display the data averaged over models as used for the by-

item analyses (see Supplementary Fig. 1-8).  
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Code availability 

All computer code used to run the simulations and analyze the results will be made 

available on github at the time of publication.
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Simulated effects  Example     N400 data    Reference   
_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 
 

Basic effects 
 

Semantic incongruity  I take my coffee with cream and sugar/ dog. cong. < incong.     Kutas & Hillyard (1980)  

 

Cloze probability  Don’t touch the wet paint/ dog.   high < low    Kutas & Hillyard (1984)   

 

Position in sentence        late < early    Van Petten & Kutas (1991) 

 

Categorically related  They wanted to make the hotel look more like  cong. < cat. rel. incong. < incong.  Federmeier & Kutas (1999) 

incongruity   a tropical resort. So along the driveway they  

planted rows of palms/ pines/ tulips. 

 

Lexical frequency        high < low    Barber, Vergara, & Carreiras (2004) 

 

Semantic priming  sofa - bed     related < unrelated   Koivisto & Revonsuo (2001) 

 

Associative priming  wind - mill     related < unrelated   Koivisto & Revonsuo (2001) 

 

Repetition priming         repeated < unrelated   Rugg (1985) 

 

Reversal anomalies  Every morning at breakfast.. the boys would eat/ cong. =< rev. anom. < incong.  Kuperberg, Sitnikova, Caplan, &  

    … the eggs would eat/ … the boys would plant      Holcomb (2003) , Hoeks et al. (2004) 

 

Word order violation  She is very satisfied with the ironed neatly linen no effect    Hagoort & Brown (2000) 

        

Extensions 
 

Age           babies: less compr. < more compr.  Friedrich & Friederici (2009), Kutas &  

          later: young > old   Iragui (1998), Atchley et al. (2006) 

 

Priming during near chance chien – chat     related < unrelated   McLaughlin, Osterhout & Kim (2004) 

2nd language performance 

 

Repetition X incongruity        cong. (|nonrep. – rep.|) <    Besson, Kutas, & van Petten (1992) 

incong. (|nonrep. – rep.|) 
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

Table 1. Overview of simulated effects. cong: congruent; incong.: incongruent; cat. rel.: categorically related; rev. anom.: reversal anomaly; compr.: comprehension; 

rep.: repeated; nonrep.: nonrepeated.  
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Supplementary Table 1 

 

Words (i.e. labels of input units) and their semantic representations  (i.e., labels of the 
output units by which the concepts that the words refer to are represented) 

 

 
Words  Semantic representations 
___________________________________________________________________________ 
 
Woman person, agent, adult, female, woman 
Man   person, agent, adult, male, man 
Girl   person, agent, child, female, girl 
Boy   person, agent, child, male, boy 
 
Drink  action, consume, done with liquids, drink 
Eat  action, consume, done with foods, eat 
Feed  action, done to animals, done with food, feed 
Fish   action, done to fishes, done close to water, fish 
Plant   action, done to plants, done with earth, plant 
Water   action, done to plants, done with water, water 
Play   action, done with games, done for fun, play 
Wear  action, done with clothes, done for warming, wear 
Read  action, done with letters, perceptual, read 
Write  action, done with letters, productive, write 
Look at  action, visual look at 
Like  action, positive, like 
 
Kitchen location, inside, place to eat, kitchen 
Living room location, inside, place for leisure, living room 
Bedroom location, inside, place to sleep, bedroom 
Garden  location, outside, place for leisure, garden 
Lake   location, outside, place with animals, lake 
Park  location, outside, place with animals, park 
Balcony location, outside, place to step out, balcony 
River  location, outside, place with water, river 
Backyard location, outside, place behind house, backyard 
Veranda location, outside, place in front of house, veranda 
 
Breakfast situation, food related, in the morning, breakfast 
Dinner  situation, food related, in the evening, dinner 
Excursion situation, going somewhere, to enjoy, excursion 
Afternoon situation, after lunch, day time, afternoon 
Holiday situation, special day, no work, holiday 
Sunday situation, free time, to relax, Sunday 
Morning situation, early, wake up, morning 
Evening situation, late, get tired, evening 
 
Egg  consumable, food, white, egg 
Toast  consumable, food, brown, toast 
Cereals consumable, food, healthy, cereals 
Soup  consumable, food, in bowl, soup 
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Pizza  consumable, food, round, pizza 
Salad  consumable, food, light, salad 
 
Iced tea consumable, drink, from leaves, iced tea 
Juice  consumable, drink, from fruit, juice 
Lemonade consumable, drink, sweet, lemonade 
Cacao  consumable, drink, with chocolate, cacao 
Tea  consumable, drink, hot, tea 
Coffee  consumable, drink, activating, coffee 
 
Chess  game, entertaining, strategic, chess 
Monopoly game, entertaining, with dice, monopoly 
Backgammon game, entertaining, old, backgammon 
 
Jeans  garment, to cover body, for legs, jeans 
Shirt  garment, to cover body, for upper part, shirt 
Pajamas garment, to cover body, for night, pajamas 
 
Novel  contains language, contains letters, art, novel 
Email  contains language, contains letters, communication, email 
SMS  contains language, contains letters, communication, short, SMS 
Letter  contains language, contains letters, communication, on paper, letter 
Paper  contains language, contains letters, scientific, paper 
Newspaper contains language, contains letters, information, newspaper 
 
Rose  can grow, has roots, has petals, red, rose 
Daisy  can grow, has roots, has petals, yellow, daisy 
Tulip   can grow, has roots, has petals, colorful, tulip 
 
Pine  can grow, has roots, has bark, green, pine 
Oak  can grow, has roots, has bark, tall, oak 
Birch  can grow, has roots, has bark, white bark, birch 
 
Robin  can grow, can move, can fly, red, robin 
Canary  can grow, can move, can fly, yellow, canary 
Sparrow  can grow, can move, can fly, brown, sparrow 
 
Sunfish  can grow, can move, can swim, yellow, sunfish 
Salmon  can grow, can move, can swim, red, salmon 
Eel   can grow, can move, can swim, long, eel 
 
By  passive voice (activated together with the deep subject, e.g., ‘by the man’) 
Was  passive voice (activated together with the verb, e.g., ‘was played’) 
During/at no output units (activated together with situation words, e.g., ‘at breakfast’) 
In   no output units (activated together with location words, e.g., ‘in the park’) 
  

 

   

 

 
 


