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Abstract

The N400 component of the event-related brain pgatemas aroused much interest
because it is thought to provide an online meastirreaning processing in the brain. This
component, however, has been hard to capture withdgitional approaches to language
processing. Here, we show that a neural networtkethzhews these traditions can capture a
wide range of findings on the factors that afféet amplitude of the N400. The model
simulates the N400 as the change induced by amimgpword in an initial, implicit
probabilistic representation of the situation oemtvdescribed by the linguistic input, captured
by the hidden unit activation pattern in a neustinvork. We further propose a new learning
rule in which the process underlying the N400 dsiwaplicit learning in the network. The
model provides a unified account of a large bodffrafings and connects human language

processing with successful deep learning approachasguage processing.



| like coffee with cream and dog? Changein an implicit probabilistic representation

captures meaning processing in the brain

The N400 component of the event-related brain pstle(fcRP) has received a great
deal of attention, as it promises to shed lightrenbrain basis of meaning processing. The
N400 is a negative deflection at centroparietattebele sites peaking around 400 ms after the
presentation of a potentially meaningful stimullise first report of the N400 showed that it
occurred on presentation of a word violating exgeats established by context: given “I
take my coffee with cream and’ the anomalous wordog produces a larger N400 than the
congruent wordsugar®. Since this study, the N400 has been used asemdept variable in
over 1000 studies and has been shown to be moduigta wide range of variables including
sentence context, category membership, repetiiot Jexical frequency, amongst ottfers
However, despite the large amount of data on thg@0INis functional basis is not well
understood: various verbal descriptive theoriesaatively debateti’, but their capacity to
capture all the relevant data is difficult to sggemtly evaluate due to the lack of
implementation and none has yet offered a genesaltgpted account. Indeed, the authors of
a recent review (Kutas & Federmeier, 2011) haveadhttat “ERP parameters are (...) neither
generally nor readily reducible to psychologicahstoucts.” Ultimately, the authors suggest
“the field must be willing to rethink the pool ofalable cognitive constructs it has
developed, largely from end-state measures” (p).6E4isting accounts are often grounded,
at least in part, in traditional modes of theorigbased on constructs originating in the
1950’¢, in which symbolic representations (e.g., of theanings of words) are retrieved from
memory and subsequently integrated into a compaositirepresentation — an annotated
structural description thought to serve as theasgmtation of the meaning of a sentérice
Even though perspectives on language processirgydalved in a variety of ways, many

researchers maintain the notion that word mearangdirst retrieved from memory and



subsequently assigned to roles in a compositi@pmksentation. The account we offer here
does not employ these constructs and thus mayilsot&rto the effort to rethink aspects of
several foundational issues: What does it meamderstand language? What are the
component parts to the process? Do we construacietwal description of a spoken
utterance in our mind, or do we more directly cangta representation of the speaker’s
meaning? Our work suggests different answers thasetoften given to these questions.

We present an explicit computational model thabaots well for a wide range of
findings in the literature on the N400. The modalled theSentence Gestal§G) model,
was initially developed nearly 30 years a§&°with the explicit goal of illustrating how
language understanding might oceuthoutrelying on the traditional mode of theorizing
described above. The model sought to offer a fanat-level characterization of language
understanding in which each word in a sentence soembears or reads provides clues that
constrain the formation of an implicit represertatof the event being described by the
sentence. The initial work with the motfaéstablished that it could capture several core
aspects of language, including the ability to res@mbiguities of several kinds; to use word
order and semantic constraints in constructingethent representation; and to represent
events described by sentences never seen durimgtierk’s training.

The current work extending this model to addres8N&mplitudes complements
efforts to model neurophysiological details undiedythe N40&**¢ we focus on providing a
functional level account of the way the probaltiselationship between linguistic utterances
and their meanings — and human experience ofefationship — shapes the extent to which
the presentation of a word or sequence of wordatggd learned representation of meaning,
defined as an implicit representation that suppactarate estimates of the probability of the
different aspects of the event described by théesen.

The design of the model reflects the principle tisa¢ners continually update their

representation of the event being described asiaaoming word of a sentence is presented.



The representation is an internal representatiota{ppely corresponding to a pattern of
neural activity, modeled in an artificial neuratwerk) called thesentence gestalSG) that
depends on connection-based knowledge iufuatepart of the network (see Fig. 1). The
SG pattern can be characterized as implicitly regaméng subjective probability distributions
over the aspects or features of the event beingribes by the sentence and of the
participants in the event (s&aplicit probabilistic theory of meaninggection inonline
methods The magnitude of the update produced by eactessose word corresponds to the
change in this implicit representation that is et by the word, and it is this change, we
propose, that is reflected in N400 amplitudes. Bigally, the semantic updatéSU) induced
by the current worda is defined as the sum across the units in theaS€& lof the absolute
value of the change in each unit’s activation poatuby the current wonal For a given unit
(indexed below by the subscriptthe change is simply the difference between theésuni

activation after worah and after woradh-1:

N400, = SUy = ) la;(wy) = (W)
i

This measure can be related formally to a Bayesieasure of surpriSeand to the signals
that govern learning in the network (sedine methodand below). Indeed, we propose a
new learning rule driven by the semantic updatewahg the model to address how language
processing even in the absence of external evartmation can drive learning about events
and about how speakers use language to descrilme the

How does the semantic update capture the N4O@? Afiistener has heard “I take my
coffee with cream and...” our account holds thatabtivation state already implicitly
represents a high subjective probability that t{heaker takes her coffee with cream and
sugar, so the representation will change verglitthen the final word “...sugar” is presented,
resulting in little or no change in activation, ahds a small N400 amplitude. In contrast, the
representation will change much more if “...dog” regented instead, corresponding to a
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much larger change in the subjective probabilgflected in a larger change in the pattern of
activation and thus a larger N400 amplitude.
Distinctive Featur es of the Sentence Gestalt M odel

Several aspects of the model’s design and behaxgoworth understanding in order
to see why it accounts for the findings we applpibelow. First, the model is designed to
form a representation of tlewentdescribed by the sentence that it hears, ratherdh
representation of the sentence itself. The wardd (heir arrangement) provideiesabout
the event, and objects can be inferred as evettipants without being mentioned. For
example, a knife might be inferred upon hearinge bloy spread the butter on the bread.’
This makes it different from many other modelsasfJuage processing in which listeners are
thought to be updating specificalipguistic expectations about specific words or to be
building structured representations in which worebmngs are inserted into roles or slots in a
structural description that may be tied closelyh® sentence itséff'’. Furthermore, unlike
most other models, the SG model does not contpiarate modules that implement distinct
stages of syntactic parsing or of accessing thenmgsa of individual words on the way to the
formation of a representation of the event. Irdtis® model simply maps from word forms
to an implicit probabilistic representation of tnerall meaning of the sentence.

Second, we as modelers make no stipulations dbtihe or structure of the model’'s
internal representatiohsRather, these representations are shaped byatistiss of the
experiences it is trained on, as in some languagesentation models developed by other
groups in recent yeat&*® In this way our model is similar to contempordgep learning
models such as Google Transfitevhich likewise make no stipulations of the form o

structure of the internal representation generfited an input sentence; instead the

! To train the model, the model does require a way of providing it with information about the event described
by the sentence. We follow the choice made in the original implementation, in which events are described in
terms of an action, a location, a situation (such as ‘at breakfast’), the actor or agent in the event, and the object
or patient to which the action is applied. Critically, the event description is not the model’s internal
representation of the event, but is instead a simplified characterization of those aspects of events that the
model learns to derive from the presented sentences.



representations are shaped by the process of hgaimpredict the translation of an input
sentence in one language into other languages.ghhowur model is simpler than Google
Translate, which employs more layers of neuron-ikecessing units, the models are similar
in avoiding representational commitments, and tleeass of Google Translate can be seen as
supporting the view that a commitmentatoy stipulated form of internal representation is an
impediment to capturing the nuancgdasiregulamature of languagé® Learning takes

place in the model over an extended time coursagttioof as loosely corresponding to the
time course of human development into early adolthdased on the gradual accumulation

of experience about events and the sentences speseeto describe them. Among other
things, this means that the extent of the semapiiiate that occurs upon the presentation of a
particular word in a particular context dependsardy on the statistics of the environment,
but also on the extent of the model’s training eréby allowing it to address changes in N400
responses as a function of experience.

Third, the model responds to whatever inputsaenees, independently of whether its
inputs form sentences or are simply isolated wordsairs of words. Thus the model will
update its state after the presentation of any walolwing the possibility of capturing
findings from N400 studies in which words are preed singly or in pairs, as well as
findings from studies in which N400Q’s are obsert@avords presented in complete sentence
contexts.

Finally, we view the processing of language (atietoforms of meaningful input) to
be a complex and multi-faceted process, and wéhee8G model — and the N400 — as
characterizing one aspect of this process. This \8econsistent with the fact that other ERP
components appear to reflect different aspectarajuage processing. Specifically, we see
the model as reflecting an implicit process thatrapes quickly and automatically as a stream
of linguistic input is presented, constructing arplicit, initial representation of the event or

situation that is being described. Language psiagsnay also involve other components



that might form expectations about specific word¥fe and their sequencing that are not
captured by the SG model or the N400. Furthermtbeeinitial representation that the model
forms as it processes language in real time magm@tys correspond to the final understood
meaning of a sentence. Other processes may camplay in understanding sentences with
unusual structure, and these processes may resiiiainges to the meaning representation
that is ultimately derived from reading or listegito a linguistic input. In thBiscussion
below we consider how the formation of an initiadplicit representation of meaning, as
captured by the SG model, might fit into this breaplicture, and how our findings may
inform discussions of other aspects of human laggyaocessing.
Training the Sentence Gestalt M odel

To train the model, we use an artificial corpug s#ntenceevent training examples
produced by a generative model that embodies aifiedpand controlled micro-world in
which the statistics of events, the propertiehefdbjects that occur in them, and the words
used in sentences about these events are compietetplled by the modeler (sealine
method¥ This approach prevents us from testing the maatél the actual sentences used in
targeted experiments, since the true statistieealfevents and sentences are not fully
captured. Given the successes of Google Trarstat®ther deep learning approaches to
language processing, it may eventually be possiblein a successor to our model on a
much larger corpus of real sentences, allowing niraglef the semantic update produced by
the actual materials used in empirical experime®igch a success would still leave open the
guestion of what factors were responsible for tloeleis behavior. Our approach, relying on
a synthetic corpus, allows us to build into thénirey materials manipulations of variables
corresponding to those explored in the designe@tkperiments we are modeling. For
example, we can separately manipulate how frequentbbject designated by a particular
word appears in an event of a particular type (@@ often a knife is used for spreading

butter on bread) and the extent to which the pta=eof the object signaled by a word are



consistent with the properties of the objects tiygically appear in events of this type (e.g. an
axe, though never used in spreading, is more secafiptsimilar to a knife than a chair is).
Thus we are able to separate predictability fromas#ic similarity more cleanly than might

be possible using a large corpus of real sentences.
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Figure 1. The Sentence Gestalt (SG) model architecture, sipp@cessing a sentence with a high or low cloobability ending, and the model’'s N40O0 correlatee T
model (gray boxes on the left) consists of an ugpdatwork and a query network. Ovals representrtagéunits (and number of units in each layeryofrs represent
all-to-all modifiable connections; each unit apglia sigmoid transformation to its summed inputsrefteach input is the product of the activatiothaf sending unit
times the weight of that connection. In the upghate of the model, each incoming word is procedbenligh layer Hidden 1 where it combines with thevjpus
activation of the SG layer to produce the updat&do&ttern corresponding to the updated implicitresgentation of the event described by the sentéhaing
training, after each presented word, the modekabpd concerning all aspects of the described efe2gt agent, “man”, action, “play”, patient, “monaoly”, etc.) in
the query part of the network. Here, the activafiam the probe layer combines via layer Hiddenith the current SG pattern to produce output adtivas. Output
units for selected query response units activatagsponse to the agent, action, and patient pra@lbeshown; each query response includes a disshignug event
feature (e.g. ‘man’, ‘woman’, as shown) as welbétger features (e.g., ‘person’, ‘adult’, not showhat capture semantic similarities among eventipgrants; see
Supplementary Table 1). After presentation of “Tien”, the SG representation (thought bubble atléff) supports activation of the correct event teas when
probed for the agent and estimates the probalslititaction and patient features consistent with igent. After the word “plays” (shown twice iretmiddle of the
figure) the SG representation is updated and thdahwow activates the correct features given thenagnd action probes, and estimates the probglafialternative
possible patients. These estimates reflect the Fsadgerience, since the man plays chess withenighobability than monopoly. If the next word hess” (top), the
change in the pattern of activation on the SG lggemmed magnitudes of changes shown in ‘Differeactr’) is smaller than if the next word is “maquaty”
(bottom). The change signal, called the Semantudi#(SU) is the proposed N40O correlate (right)s larger for the less probable ending (monopdigttom) as
compared to the more probable ending (chess, top).
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Results

We report fourteen simulations of well-establisihtDO effects chosen to illustrate
how the model can address a broad range of emifindangs taken as supporting diverse
and sometimes conflicting descriptive theoriesheffunctional basis of the N40O (see Table
1). We focus on language-related effects but rrelioth linguistic and non-linguistic

information contribute to changes in semantic attbn as reflected by the N4D0
Please insert Table 1 about here
Basic effects

From “violation signal” to graded reflection of sprise.The N400 was first observed after a
semantically anomalous sentence completion suelgasHe spread the warm bread with
socks' as compared to a high probability congruent cotiguigbutter). Correspondingly, in
our model, SU was significantly larger for sentenegth endings that are both semantically
and statistically inconsistent with the trainingpas compared to semantically consistent,
high-probability completions (Fig. 2a and SuppletagnFig. 1a). Soon after the initial study
it became clear that the N400 is graded, with laageplitudes for acceptable sentence
continuations with lower cloze probability (definas the percentage of participants that
continue a sentence fragment with that specificworan offline sentence completion task),
as in the example “Don't touch the weiig (low cloze) paint(high cloze)?. This result is
also captured by the model: it exhibited largerf8tsentence endings presented with a low
as compared to a high probability during trainikgy( 2b, Fig. 1, and Supplementary Fig.
1b). The graded character of the underlying protesgther supported empirically by the
finding that N40Os gradually decrease across thaesee of words in normal congruent
sentenced. SU in the model correspondingly shows a gradeai@hse across successive

words in sentences (Fig. 2c and Supplementaryl€igseeonline method$or details).
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Figure 2. Simulation results for the basic effects. Dispthigethe model’'s N40O correlate,
i.e. the update of the Sentence Gestalt layer aobir — the model’s probabilistic
representation of sentence meaning - induced byeleincoming word. Cong., congruent;
incong., incongruent. See text for details of esiofulation. Each blue dot represents the
results for one independent run of the model, ayedaacross items per condition; the red
dots represent the means for each condition, adcereor bars represent +/- SEM
(sometimes invisible because bars may not exceeartfa of the red dot). Statistical results
(t from the model analysesftom the item analyses): a, semantic incongruity; + 25.00,

p <.0001, ) = 11.24, p <.0001; b, cloze probability;d) = 8.56, p < .0001,49) = 6.42, p
<.001,; c, position in sentenceyd) = 8.17, p <.0001, %11y = 43.54, p <.0001 from the
second to the third sentence positiangt= 4.73, p <.01, 411)= 4.66, p <.01, from the third
to the fourth position;ifg) = 17.15, p < .0001 511y = 12.65, p <.0001, from the fourth to the
fifth position; d, categorically related incongrigs were larger than congruent} = 10.63,
p <.0001, $) = 3.31, p < .05, and smaller than incongruent ¢ouaations, {g) = 14.69, p <
.0001, $¢9) = 12.44, p <.0001,; e, lexical frequencyjf= 3.13, p < .05, 413= 3.26, p < .01;
f, semantic priming:itg) = 14.55, p < .0001 59 = 8.92, p <.0001; g, associative priming:
t19) = 14.75, p < .0001 5tg) = 18.42, p < .0001; h, immediate repetition primiry ) = 16.0,
p <.0001, $) = 18.93, p <.0001,; i, semantic illusionid) = 2.09, p = .133,47)=5.67, p <
.01, for the comparison between congruent condioth semantic illusion;f) = 10.66, p <
.0001, $¢7y= 3.56, p < .05, for the comparison between semaltusion and incongruent
condition.
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Supplementary Figure 1. Simulation results for the basic effects (by ite$played is the
model’s N400 correlate, i.e. the update of the &wre Gestalt layer activation — the model’s
probabilistic representation of sentence meaniimgluced by the new incoming word. Cong.,
congruent; incong., incongruent. See text for detaf each simulation. Here, each blue dot
represents the results for one item, averaged act@sindependent runs of the model; the red
dots represent the means for each condition, adcereor bars represent +/- SEM
(sometimes invisible because bars may not exceeartfa of the red dot). Statistical results
are reported in the caption of Fig. 2 in the maemtt

Expectancy for words or semantic featurds$f findings discussed above would be
consistent with the view that N40Os reflect thecirse probability of a word in a specific
context (i.e. word surprisd), and indeed, a recent study observed a signtfimamelation
between N400 and word surprisal measured at thrublatyer of a simple recurrent network
(SRN) trained with a naturalistic corpus to predna next word based on the preceding
context®. However, there is evidence that N400s may nat fumction of word probabilities

per sebut rather of probabilities of aspects of mearsiggmaled by words: N400s are smaller
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for incongruent completions that are closer semaltyito the correct completion than those
that are semantically more distant. For examplesicier the sentence: “They wanted to make
the hotel look more like a tropical resort. Songldhe driveway they planted rows of’...

The N400 increase relative palms(congruent completion) is smaller foines(incongruent
completion from the same basic level category axtimgruent completion) than faulips
(incongruent completion not from the same basielleategory as the congruent
completion)?’. Our model captures these results: We comparefbSééntence completions
that were presented with a high probability dutiragning and two types of never-presented
completions. SU was lowest for high probabilityrgaetions, as expected; crucially, among
never-presented completions, SU was smaller faeloat shared semantic features
capturing basic level category membership as veetither aspects of semantic similarity with
high probability completions compared to those thdtnot share semantic features with any

of the completions presented during training (Riyand Supplementary Fig. 1d).

Semantic integration versus lexical accesbte sentence-level effects considered
above have often been taken to indicate that N4@fliaudes reflect the difficulty or effort
required to integrate an incoming word into thecpoing conteXt?® However, a sentence
context is not actually needed: N40O effects can bk obtained for words presented in pairs
or even in isolation. Specifically, N40Os are smalor isolated words with a high as
compared to a low lexical frequeriyfor words (e.g. “bed”) presented after a catezmzily
related prime (e.g., “sofa”) or an associativelated prime (e.g., “sleep”) as compared to an
unrelated prim&; and for an immediate repetition of a word compacethe same word
following an unrelated primi& Such N400 effects outside of a sentence corgspecially
the influences of repetition and lexical frequerttgye led some researchers to suggest that
N400 amplitudes do not reflect the formation oépresentation of sentence meaning but

rather lexical access to individual word mearitigAs previously noted, the SG pattern

14



probabilistically represents the meaning of a sergef one is presented, but the model will
also process words presented singly or in paidgedd, the model captures all four of the
above-mentioned effects: First, SU was smallerdolated words that occurred relatively
frequently during training (Fig. 2e and Supplementag. 1e). Furthermore, SU was smaller
for words presented after words from the same stmeategory as compared to words from
a different category (Fig. 2f and Supplementary Efyj and smaller for words presented after
associatively related words (objects presented aftgpical action as in “chess” following
“play”) as compared to unrelated words (objects@néed after an unrelated action as in
“chess” following “eat”) (Fig. 2g and Supplementaiig. 1g). Finally, SU was smaller for
immediately repeated words as compared to wordsepted after unrelated words (Fig. 2h

and Supplementary Fig. 1h).

Semantic illusions and the N40®finding that has puzzled the N400 community is
the lack of a robust N40O0 effect in reversal anaasalalso termedemantic illusiongs a
surprisingly small N40O occurs in sentences suctcasry morning at breakfast, the eggs
would eat..”. There is clearly an anomaly here — English sgiitaconventions map eggs to
the agent role despite the fact that eggs canmet et N400 amplitudes are only very
slightly increased in such sentences as compartx tcorresponding congruent sentences
such as “Every morning at breakfast, the boys weald.“*2. This lack of a robust N400
effect in reversal anomalies is accompanied byarease of the P600, a subsequent positive
potential. In contrast, N40O but not P600 ampbtudre considerably larger in sentence
variations such as “Every morning at breakfasthiygs wouldplant..“*2. How can we
understand this pattern? One anafjidi®ats these findings as challenging the view tthet
N400 is related to interpretation of sentence nregrbased on the argument that such

sentences should produce a large N400 becausevthég require (for example) treating the
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eggs as the agents of eating, and this would reguaubstantial change in the meaning
representation.

We find, however, that the semantic update in Ben®del reproduces the pattern seen in
the human N400 data. That is, the model exhibitdyg a very slight increase in SU for
reversal anomalies (e.g., “At breakfast, the ezgys.”) as compared to typical continuations
(e.q., “At breakfast, the maegats...”), and a substantial increase in SU for atypical
continuations (e.g., “At breakfast, the m@aants..”) (Fig. 2i and Supplementary Fig. 1i).
What happens in the SG model when it is presentddareversal anomaly? Analysis of the
guery network’s response to relevant probes (Biguggests that the model exhibits a
semantic illusion, in that the SG continues to igify represent the eggs as the patient
instead of the agent of eating even after the weatds presented. This observation is in line
with the idea that, when presented with a reveasamaly, comprehenders still settle at least
initially into the most plausible semantic intefatgon of the given input (i.e., the eggs being
eaten) even if the sentence is anomalous syntgtitaSince in the model’s experience eggs
are things that are eaten, and never things thait eantinues to treat them this way even
though the sentence structure differs from thectire it has experienced during training. To
demonstrate the robustness of this kind of behanitite model, we conducted an additional
simulation of a similar finding using a slightlyfidirent type of reversal anomaly that has
been the focus of a previous mod¢seediscussiorsection for more details). The experiment
was conducted in Dutch using Dutch word order catives, and differed from the previous
study in that two noun phrases are presented farithre presentation of the verb. In the
anomalous sentences, the sentences seem to deswidssible events such as for instance
an event in which a javelin throws some athletes. (®e speer heft de atletgeworpen,

lit: “The javelin has the athletesrowr’), yet there is little or no N40O response at the
presentation of the verb relative to ordinary colngentences in which it is the athletes that

are said to do the throwing (“De speer werd dooattktengeworpen, lit: “The javelin was
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by the athletethrown”) *. For this simulation we trained an additional maztethe same
training corpus, but with Dutch word order (pleaseonline methodand Supplementary
Fig. 2 for details). Once again the SG model is'thoown’ by the anomalous sentences —
instead it interprets both versions of the sentemta way that is consistent with its

experience with events.
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Figure 3. Processing semantic illusions. Activation of seld®utput units while the model
processes a sentence from the semantic illusioulation: “At breakfast, the egg eats...".
Note that the model continues to represent theasgfe patient (not the agent) of eating,
even after the word “eat” has been presented, gvise to a ‘semantic illusion’.

In summary, the model shows that the lack of anONA6rease for reversal anomalies
is consistent with the view that the N400 reflabis updating of an implicit representation of
sentence meaning. The model pre-dates the discoféng semantic illusion phenomenon,

and accounts for it without any modification, thbube details of experience (for the model

and for human learning) are expected to affecsibe and nature of the update produced by
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particular anomalous sentences. As noted in thedattion, our account leaves open the
possibility that other processes which may be céfie in the P600 could be involved in
detecting the anomaly and possibly revising thiaininterpretation captured by the SG

model (sediscussiorbelow).
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Supplementary Figure 2. Simulation results for eosel type of semantic illusion where the
relationship between two noun phrases is estaldigh®r to encountering the verb (see text
for more details*; the simulation was conducted with a model traiméih Dutch word

order. Cong., congruent; incong., incongruent. Tef. Each blue dot represents the results
for one independent run of the model, averagedsacitems per condition. Top right. Each
blue dot represents the results for one item, ayedeacross 10 independent runs of the
model. The red dots represent the means for eauttittan, and red error bars represent +/-
SEM. Results are similar as for the other semahtision simulation: {g = 1.69, p = .38,

ta) = 12.67, p < .0001, for the comparison betweengeaant condition and semantic
illusion; ty9) = 13.31, p <.0001,2t7y = 6.76, p < .001, for the comparison between seran
illusion and incongruent condition, angdf =12.18, p < .0001,47 = 7.36, p < .001, for the
comparison between congruent and incongruent camdiBottom. Activation of the unit
“pine” in response to the Agent and Patient problethe model processes a sentence from
this semantic illusion simulation, literally “Thene has the man watered.” (i.e., “The pine
has watered the man.” with Dutch word order). Astfee other semantic illusion, the model
represents the pine as the patient instead of gfemtof the event throughout the sentence.

18



Specificity of the N40O to violations of semardither than syntactic factor§Vhile
the N400 is sensitive to a wide range of semarai@bles, amplitudes are not influenced by
syntactic factors such as for instance violationeard order (e.g., “The girl is very satisfied
with the ironed neatly linen.”) which instead lifi600 effect€. Because the model is
representing the event described by the sentendehes event itself is not necessarily
affected by a change in word order, the modekmsnise insensitive to such violations. To
demonstrate this, we examined the model’s resptonsiganges in the usual word order (e.g.,
“On Sunday, the matte robinfeeds” compared to “On Sunday, the nieedsthe robin),
examining the size of the semantic update at thlelighted position, where the standard
word-order is violated. We found that, if anythii®) was actually slightly larger in the
condition with the normal as compared to the chdnvgerd order (please see Fig. 4 and
Supplementary Fig. 3; significant over models kattitems). This is because changes in word
order also entail changes in the amount of infoiomadé word provides about the event being
described,; it turns out that the amount of semarddate was on average slightly larger in the
sentences with normal compared to changed word (gdeonline method$or details).

Word order
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Figure 4. Simulation of the influence of a change in normafd order. Change, changed
word order; control, normal word order. Each bluetdepresents the results for one
independent run of the model, averaged across ipansondition; the red dots represent the
means for each condition, and red error bars reprast/- SEM. Semantic update was
slightly larger for normal compared to changed wardler; the main effect was significant
over models,ifgy= 5.94, p <.001, but not over itemsdh= 1.56 p = .14,
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Supplementary Figure 3. Simulation of the influence of a change in wordeor(by item).
Change, changed word order; control, normal wordan. Each blue dot represents the
results for one item, averaged across 10 runs@ftlodel; red dots represent means for each

condition, and red error bars represent +/- SEMat&itical results are reported in the
caption of Fig. 4.

Extensions

In all of the simulations above, it would have h@essible to model the phenomena
by treating the N400 as a direct reflection of digm estimates of event-feature
probabilities, rather than as reflecting the upadten implicit internal representation that
latently represents these estimates in a way tiigiteecomes explicit when queried. In this
section, we show that the implicit semantic updateasured at the hidden SG layer) and the
change in the networks’ explicit estimates of feafrobabilities in response to probes
(measured at the output layer) can pattern diftgrewith the implicit semantic update
patterning more closely with the N400, supportirrgla for the update of the learned implicit
representation rather than explicit estimates eheteature probabilities or objectively true
probabilities in capturing neural responses (sdne method$or details of these measures).
We then consider how the implicit semantic update @rive connection-based learning in the

update network, accounting for a final observedgpatof empirical findings.

DevelopmentN400s change with increasing language experiend ®agr
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developmental time. The examination of N400 effacwifferent age groups has shown that
N400 effects increase with comprehension skillsahie$’ but later decrease with &5&° A
comparison of the effect of semantic congruity @ha different points in training shows a
developmental pattern consistent with these fingli{fgg. 5, top, and Supplementary Fig. 4,
top): the size of the congruity effect on SU firetreased and then decreased as training
proceeded. Interestingly, the decrease in theteffe SU over the second half of training was
accompanied by a continuing increase in the efiesemantic congruity on the change in
output activation (Fig. 5, bottom, and SupplemegnEkg. 4, bottom). The activation pattern at
the output layer directly reflects explicit estimsbf semantic feature probabilities in that
units at the output layer explicitly specify semam¢atures, such as for instance “can grow”,
“can fly” etc., and network error (across the tnagnenvironment) is minimized when the
activation of each feature unit in each situatiorresponds to the conditional probability of
this feature in this situation (e.g., an activatstate of .7 in a situation where the conditional
probability of the feature is .7). Thus, in tharned model, changes in output activation
induced by an incoming word approximate changexpiicit estimates of semantic feature
probabilities induced by that word. The continuingrease of the congruity effect across
training displayed at the bottom of Fig. 5 thuswsthat changes in explicit estimates of
semantic feature probabilities do not pattern \héhdevelopmental trajectory of N400
effects. Instead, the change in hidden SG layévatin patterns with the N40O (Fig. 5, top),
showing that the implicit and ‘hidden’ characteitteé model’s N40O correlate is crucial to
account for the empirical data. Tecreasen the amount of activation change at the hidden
SG layer and the correspondimgreasein the amount of activation change at the output
layer over the later phase of learning shows #Hetearning proceeds, less change in
activation at the SG layer is needed to effectigelgport larger changes in explicit
probability estimates. This pattern is possibledse, as noted above, the activation pattern

at the SG layer does not explicitly represent tlubdabilities of semantic features per se;
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instead it provides a basis (together with the eatian weights in the query network) for
estimating these probabilities when probed. As echan weights in the query network get
stronger throughout the course of learning, smahanges in SG activations become
sufficient to produce big changes in output actorag. This shift of labor from activation to
connection weights is interesting in that it mightderlie the common finding that neural

activity often decreases as practice leads to &as@®in speed and accuracy of task

performanc®.
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Figure 5. Development across training. Semantic incongreifgcts as a function of the
number of sentences the model has been exposkojptocSemantic update at the model’'s
hidden Sentence Gestalt layer shows at first arease and later a decrease with additional
training, in line with the developmental trajectarf/the N400. Each blue dot represents the
results for one independent run of the model, ayedaacross items per condition; the red
dots represent the means for each condition, adeereor bars represent +/- SEM. The size
of the effect (i.e. the numerical difference betwibe congruent and incongruent condition)
differed between all subsequent time poinggy 17.02, p < .0001,,5t9) = 6.94, p < .001
between 10000 and 100000 sentencggst7.80, p <.001, 49 = 10.05, p <.0001 between
100000 and 200000 sentencag) t 14.69, p < .0001,,t9 = 6.87, p < .001 between 200000
and 400000 sentencesjf= 7.70, p < .001,49) = 3.70, p < .05 between 400000 and 800000
sentences. Bottom. Activation update at the ougyetr steadily increases with additional
training, reflecting closer and closer approximatito the true conditional probability
distributions embodied in the training corpus.
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Supplementary Figure 4. Development across training (by item). Semantgomgruity

effects as a function of the number of senteneemtidel has been exposed to. Top. Semantic
update at the model’'s hidden Sentence Gestalt yaws at first an increase and later a
decrease with additional training, in line with tdevelopmental trajectory of the N400. Each
blue dot represents the results for one item, ayedaacross 10 independent runs of the
model; the red dots represent the means for eanHitton, and red error bars represent +/-
SEM. Statistical results are reported in the captid Fig. 5 in the main text. Bottom.

Activation update at the output layer steadily seses with additional training, reflecting
closer and closer approximation to the true comuatigil probability distributions embodied in
the training corpus.

Early sensitivity to a new languag&.second language learning study showed robust
influences of semantic priming on N400s while ovexical decision performance in the
newly trained language was still near chdhde/e leave it to future work to do full justice to
the complexity of second language learning, b fisst approximation we tested the model
at a very early stage in training (Fig. 6a). Evetha early stage, SU was significantly
influenced by semantic priming, associative primiagd semantic congruity in sentences
(Fig. 6b and Supplementary Fig. 5) while overtraates of feature probabilities were only

weakly modulated by the words presented.
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Figure 6. Comprehension performance and semantic updatetetiea very early stage in
training. Cong., congruent; incong., incongruemt. Activation of selected output units while
the model is presented with the sentence “The reys ghess.”. It can be seen that the
model fails to activate the corresponding unitshat output layer. The only thing that it has
apparently learned at this point is which conceqigrespond to possible agents, and it
activates those in a way that is sensitive to thase rate frequencies (in the model’s
environment, woman and man are more frequent tivhard boy; see online methods), and
with a beginning tendency to activate the correggrat (“man”) most. b. Even at this low
level of performance, there are robust effectsssbaiative priming (fo) = 6.12, p < .001,

to) = 7.31, p <.0001, top), semantic congruity in tseces (o) = 6.85, p <.0001, %9 =

5.74, p <.001, middle), and semantic priminge(t 5.39, p < .001,49) = 3.79, p < .01,
bottom), on the size of the semantic update, theelisoN400 correlate. Each blue dot
represents the results for one independent ruhefiodel, averaged across items per
condition; the red dots represent the means foheamndition, and red error bars represent
+/- SEM.

Supplementary Figure 5 (see next page). Comprehension performance and semantic update
effects at a very early stage in training (by ite@®ng., congruent; incong., incongruent.
Even at a low level of performance (see Fig. Sthémain text for illustration), there are
robust effects of associative priming (top), sengacdngruity in sentences (middle), and
semantic priming (bottom). Here, each blue dot espnts the results for one item, averaged
across ten independent runs of the model; the otsl @present the means for each
condition, and red error bars represent +/- SEMat&tical results are reported in the

caption of Fig. 6 in the main text.

24



Associative priming

4_
8
3_
$
2- °
o
14 oS8
o
related unrelated
Semantic congruity
o
o4
]
z3 %
[}
2_
3 ®
21 @
cohg. incéng.
Semantic priming
4_
3- o
2- feee) g
% o
14 8

related unrelated

The relationship between activation update and satagm in a predictive systeniihe
change induced by the next incoming word that wgyest underlies N400 amplitudes can be
seen as reflecting the ‘error’ (difference or dgeamce) between the model’'s implicit
probability estimate based on the previous word,the updated estimate based on the next
word in the sentence (sealine method$or details). If the estimate after wonds viewed as
aprediction then this difference can be viewed as a kindredligtion error. It is often
assumed that learning is based on such tempofetetite or prediction errdfs* so that if
N400 amplitudes reflect the update of a probakmligpresentation of meaning, then larger
N400s should be related to greater adaptation)arger adjustments to future estimates.
Here we implement this idea, using the semanti@atgtb drive learning: The SG layer

activation at the next word serves as the targehi® SG layer activation at the current word,
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so that the error signal that we back-propagatautiir the network to drive the adaptation of
connection weights after each presented word besdineedifference in SG layer activation
between the current and the next word, i.,.$6SG, (seeonline method$or more details).
Importantly, this allows the model to learn jusirfr listening or reading, when no separate
event description is provided. We then used thp@ach to simulate the finding that the
effect of semantic incongruity on N40Os is redubgdepetition: the first presentation of an
incongruent completion, which induces larger seiarmidate compared to a congruent
completion, leads to stronger adaptation, as reftkin a larger reduction in the N400 during
a delayed repetition compared to the congruenimmaatiori”,

To simulate the observed interaction between repetand semantic incongruity, we
presented a set of congruent and incongruent seegenfirst time, adapting the weights in
the update network using the temporal differengaaion the SG layer to drive learning. We
then presented all sentences a second time. thesigpproach, we captured the greater
reduction in the N400 with repetition of incongrteompared to congruent sentence
completions (Fig. 7 and Supplementary Fig. 6). Hlgtahe summed magnitude of the signal
that drives learning corresponds exactly to ourNd@rrelate, highlighting the relationship
between semantic update, prediction error, andrexpee-driven learning. Thus, our account
predicts that in general, larger N400Os should iedstconger adaptation. Though further
investigation is needed, there is some evidencsistamt with this prediction: larger N400Os to
single word presentations during a study phase bhaga shown to predict enhanced implicit

memory (measured by stem completion in the abseiheeplicit memory) during te$t
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Figure 7. Simulation of the interaction between delayed tiipa and semantic incongruity.
Cong., congruent; incong., incongruent; rep., rejgela Each red or green dot represents the
results for one independent run of the model, ayedaacross items per condition; the blue
dots represent the means for each condition, and btror bars represent +/- SEM. There
were significant main effects of congruity(E9) = 214.13, p <.0001, #1,9) = 115.66, p <
.0001, and repetition, §1,9) = 48.47, p < .0001, #1,9) = 109.78, p <.0001, and a
significant interaction between both factors(E9) = 83.30, p <.0001, X1,9) = 120.86, p
<.0001; post-hoc comparisons showed that evenghdalie repetition effect was larger for
incongruent as compared to congruent sentence @iops, it was significant in both
conditions, {9 = 4.21, p < .01, 9) = 6.90, p < .0001, for the congruent completiosd

t19) = 8.78, p <.0001,49 = 12.02, p <.0001, for the incongruent completon
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Supplementary Figure 6. Simulation of the interaction between delayed tiépa and

semantic incongruity (by item). Each red or greehrm@presents the results for one item,
averaged across 10 runs of the model; blue doteesgmt means for each condition, and blue
error bars represent +/- SEM. Statistical resulte aeported in the caption of Fig. 7.

27



Discussion

The N400 ERP component is widely used to investitja¢ neurocognitive processes
underlying the processing of meaning in languagendted above, attempts to understand the
factors that affect the N40O in terms of verbatiyniulated descriptive accounts grounded (at
least in part) in traditional theories of languggecessing*°**have not fully succeeded in
providing an adequate characterization of its fiometl basis. In the simulations presented
above, we have shown that an implemented compuo#dtinodel that is grounded in an
alternative approach to the nature of the languamgkerstanding process can provide a unified
account that captures a wide range of findings i@ ah The model treats N400 amplitudes as
indexing the change induced by an incoming wordnnmplicit probabilistic representation
of meaning in a neural network model that doesmptement any of the existing descriptive
accounts. The distinctive characteristics of thelehthat were described in the introduction
are essential to its ability to account for thalfitgs we have considered, as we explain below.

First, our model does not assume separate stadescdl access/retrieval of word
meanings and subsequent integration into a com@oaitrepresentation. This is crucial
because the two most prominent competing theofidged\400’s functional basis suggest
that N400 amplitudes reflect either lexical acEessntegration (also referred to as
unification) into a compositional (sometimes caltesnbinatorial) representation of the
meaning of the sentenfé In the SG model, incoming stimuli instead sersécaes to
meaning®’ which automatically change an activation pattaat tmplicitly represents
conditional probabilities of all aspects of meani@gr account is similar to the lexical access
perspective in that the process is assumed tosbeafatomatic, and implicit, but differs from
this view in that the resulting activation patteepresents not just the currently incoming
word but instead corresponds to an updated impkpitesentation of the event being

described by the sentence. In this regard our axtésgimilar to the integration view in that
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the resulting activation state is assumed to repites| aspects of meaning of the described
event (including — though this aspect is not cutyemplemented — input from other
modalities), though it differs from such accoumsvoiding a commitment to explicit
compositional representation. Our perspective saartine with a recent comprehensive
review on the N400 ERP compongwhich concluded that the N400 “does not readilypma
onto specific subprocesses posited in traditiorahéworks” (p. 639) and that therefore none
of the available accounts of N400 amplitudes - psapg functional localizations at some
specific point along a processing stream from piedd analysis over lexical processing to
word recognition, semantic access, and semanggiation - could explain the full range of
N400 data. Instead, the authors suggest that Nd@litades might best be understood as a
“temporally delimited electrical snapshot of théersection of a feedforward flow of
stimulus-driven activity with a state of the dibtrted, dynamically active neural landscape
that is semantic memory.” (p. 641). Crucially, 8@ model provides a computationally
explicit account of the nature and role of thigriisited activation state and how it changes
through stimulus-driven activity as meaning is dwizlly constructed during
comprehension. Because the model uses incomingsvegrdues to semantic event features
instead of linguistic representations in which weoade placed into specific syntactic roles, it
does not predict an N40O response to reversal dremigig. 2i & Supplementary Fig. S2) or
to violations of word order (Fig. 4).

Second, the model does not specify a specific streof the model’s internal
representations. Instead the representationd fesul a learning process and thus depend on
the statistical regularities in the model’'s envir@nt as well the amount of training the model
has received, allowing it to account for the patiefr N400 effects across development (Fig.
5) including N400 effects while behavioral performa is still near chance (Fig. 6) as well as

the influence of relatively long-term repetition NA0O congruity effects (Fig. 7).
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Third, the model updates its activation patternrughe presentation of any word,
allowing it to capture N400 effects for single wei@e., frequency effects; see Fig. 2e) and
words presented in pairs (influences of repetitieig, 2h, semantic priming, Fig. 2f, and
associative priming, Fig. 2g) as well as words @nésd in a sentence context (influences of
semantic congruity, Fig. 2a, cloze probability, .R2b, position in the sentence, Fig. 2c¢, and
semantically related incongruity, Fig. 2d).

Fourth, the N400 as captured by the model is asdumeharacterize one specific
aspect of language comprehension, namely the atitstinulus-driven update of an initial
implicit representation of meaning. This characi@ion is in line with evidence for the
N400’s anatomical localization in regions involMadsemantic representation such as the
medial temporal gyrus (MT&%and anterior medial temporal lobe (AMP19. The processes
underlying the N400 may thus correspond to the bfdanguage processing that has been
characterized as sometimes shaffband “good enoughi* and that is preserved in patients
with lesions to frontal cortex (specifically leftferior prefrontal cortex, BA475°3 Thus,
activity in temporal lobe regions MTG and AMTL megrrespond to immediate, automatic,
and implicit aspects of sentence processing asicapby the SG model. In contrast, the left,
inferior frontal cortex has been proposed to supgamtrol processes in comprehension that
are required only when processing demands aréfitguch as in syntactically complex
sentenced which require selection among competing altermatfy These aspects of
language comprehension may be reflected in oth& &Rnponents as discussed below.

The pattern of activation in the model’s Sentenest@t (SG) layer latently predicts
the attributes of the entire event described bgrdence, capturing base-rate probabilities
(before sentence processing begins) and adjustiagattern of activation as each word of
the sentence is presented. While in the curreniementation of the model, inputs are
presented over a series of discrete time stepssymnding to each successive word in the

sentence, this is just a simplification for tradigo We assume that in reality, the adjustment
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of the semantic activation occurs continuouslynmetas auditory or visual language input is
processed, so that the earliest arriving infornmaéibout a word (whether auditory or visual)
immediately influences the evolving SG represeatafi This assumption is in line with the
finding that N40O effects in spoken language coin@nsion often begin to emerge before the
spoken word has become acoustically unigjtielt is important to underline the point that
this kind of prediction does not refer to the aetand intentional prediction of specific items
but rather to a latent or implicit state such thatmodel (and presumably the brain) becomes
tuned through experience to anticipate likely upicaninput to respond to it with little
additional change. This entails that semantic atitm changes induced by new incoming
input as revealed in the N400 reflect the discrepdretween probabilistically anticipated and
encountered information about aspects of the sfatee world conveyed by the sentence and
at the same time correspond to the learning sidgahg adaptation of connection-based
knowledge representations. In this sense, our apprdirst introduced almost 30 years ago,
anticipates predictive coding approaches to unadedstg the dynamics of neural activity
patterns in the braif?®. Our simulations suggest that the semantic systesnnot represent
probabilities of aspects of meaning explicitly bather uses a summary representation that
implicitly represents estimates of these probaédjtsupporting explicit estimates when
gueried and becoming more and more efficient asileg progresses.

Recently, other studies have also begun to linkN#@O to computational models.
Most of these have concentrated on words presesimgty or after a preceding prime, and
therefore do not address processing in a sentemtexd*°®* Two modeling studies focus
on sentence processing. One of these studies @uosarworrelation between N400s and word
surprisal as estimated by a simple recurrent né&t\W®RN) trained to predict the next word
based on the preceding conf&xtBecause this SRN’s predictions generalize acostexts
and are mediated by a similarity-based internalasgntation, it can potentially account for

effects of semantic similarity on word surprisaldavould thus share some predictions with
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the SG model. However, an account of N400s insesfrword surprisal faces some
difficulties. To demonstrate this, we trained ar\Séh the same training corpus as the SG
model and repeated some of the critical simulatieis this SRN (Fig. 8 and Supplementary

Fig. 7; seeonline method$or details).
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Figure 8. Simulation results from a simple recurrent networdel (SRN) trained to predict
the next word based on the preceding context. Baghdot represents the results for one
independent run of the model, averaged across ipansondition; the red dots represent the
means for each condition, and red error bars reprast/- SEM. Top left, semantic illusion:
t19) = 4.55, p < .01, 7= 7.83, p < .001 for the comparison between coegtwand illusion
condition; tg) = 12.28, p < .0001,5t7) = 2.98, p = .062 for the comparison between
congruent and incongruent conditionf = 1.52, p = .49, 49y = 1.57, p = .48 for the
comparison between incongruent and illusion conoditiTop right, word order:fg) = 29.78,

p <.0001; bas)= 6.73, p < .0001. Bottom, congruity effect ongsisal as a function of the
number of sentences the model has been exposed)ta26, p = 1.0, $) = .15, p = 1.0 for
the comparison between 10 000 and 100 000 sentenges 6.74, p < .001,49)= 1.08, p =
1.0 for the comparison between 100 000 and 200s@@@ences;fy)= 7.45, p < .001, 49) =
1.78, p = .44 for the comparison between 200 0aD400 000 sentencesidf= 10.73, p <
.0001, $9) = 1.93, p = .36 for the comparison between 400 860 800 000 sentences.
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9]
[
(€]
2.10+ o
©
L2.05
o oo
S
Co
P 5 00- o
e o :
el 0oe0
1957 o8 oodoo Cocees)
0 (¢}
incéng. illusion cohg. chaﬁged control

Development

0.04- > e
o o
e coco o
o 0.027 o 000
: 3
@ 0.00- oéo Ei? ®
>
=] o
5,-0.02- ® oo ®
5 © o)
8 )
-0.04+
(@]
-0.06- e

10 000 100000 200000 400000 800 000

Supplementary Figure 7. Simulation results from a simple recurrent networédel (SRN)
trained to predict the next word based on the pdetecontext. Each blue dot represents the
results for one item, averaged across 10 runs ®itiodel; red dots represent means for each
condition, and red error bars represent +/- SEMat&tical results are reported in the

caption of Fig. 8. Top left, semantic illusion. Traght, word order. Bottom, congruity effect
on surprisal as a function of the number of sergertbe model has been exposed to.

First, word surprisal reflects both semantic anutagtic expectation violations, while
the N400 is specific to semantic expectations asrdeed above. Indeed, while SU in the SG
model was insensitive to changes in word order. @ignd Supplementary Fig. 3), surprisal
in the SRN was significantly larger for changed¢asipared to normal word order (see Fig. 8
and Supplementary Fig. 7). The lack of specifioityhe word surprisal measure converges
with the finding that the correlation between siggrin the SRN and N400 observed in the

above mentioned stud§was observed only for content words; the SRN ssapmeasure
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when calculated over grammatical function wordsraticorrelate with the N40O responses
observed on these words.

Furthermore, the SRN did not account for the dessred N40O effects with age,
showing instead a slight increase with additioraihing (see Fig. 8 and Supplementary Fig.
7). This is because surprisal is measured in teiffrtise estimates of word probabilities, which
become sharper as learning progresses. Finall\gRie did not produce the small N40O in
reversal anomalies: When presented with “At brastkfthe eggeat..”, word surprisal was
large, numerically even larger than an incongrwentinuation (see Fig. 8 and
Supplementary Fig. 7) while semantic update inS@emodel shows only a very slight
increase, in line with N400 d&tgsee also Supplementary Fig. 8 and the accompgubsit
for relevant results from an SRN trained on a ratcorpus by S. Frank (personal
communication)).

The other sentence-level model focuses specificallyeversal anomalies, assuming
separate stages of lexical retrieval and semamegiatior". This retrieval-integration
model is computationally explicit while followingpects of the classical framework for
language processing, in which there is thoughtta Mdistinct lexical-semantic processing
module in which spreading activation can occur agn@tated items, prior to integrating the
retrieved word meanings into a compositional regmégtion of sentence meaniig The
retrieval-integration model makes the further agstion that reversal anomalies such as ‘for
breakfast the eggs wouddht’ must produce a large update in the representatisantence
meaning, since the sentence appears to descrideahin which eggs are agents engaged in
the act of eating. In this model, change in lexaalvation (which is small in reversal
anomalies due to priming, e.g. frdireakfastandeggsto eal) is linked to the N400; the
change in activation representing sentence measiagsigned to the later, P600 ERP

component.
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Supplementary Figure 8. Simulation results from a simple recurrent netw(8RN)
implementation by T. Mikol6%trained by S. Frank on 23M sentences from a weuso
Incong., incongruent; cong., congruent. The simataexperiment consisted in the
presentation of materials from the semantic illmsgxperiment by Kuperberg and
colleague¥ which we requested from the authors (there amnadlight differences in the
materials due to an issue with retrieving the araistimuli, but the materials largely overlap
and resulted in the same pattern of results; G.é¢bprg, personal communication). Each
blue dot represents the results for one item, ayedeover three runs of the model; the red
dots represent the means for each condition, adcereor bars represent +/- SEM. Results
resemble those from the SRN that we trained ordhee corpus as the SG model (Fig. 8 and
Supplementary Fig. S7) in that word surprisal warglé in the semantic illusion condition,
numerically even larger than in the incongruentdition. There were 3 runs of the model
and 180 items in each condition (1 less in the mgraent condition because the model did
not know one of the words in this condition, “cests”) so that we report statistical results
from the item analyses;i79)= 11.76, p < .0001, for the comparison betweengcaant
condition and semantic illusion;tzg) = 1.29, p = .59, for the comparison between semant
illusion and incongruent condition, anghts)=1.45, p= .45, for the comparison between
congruent and incongruent condition. We thank $té&fank for performing the simulation
and sharing the results with us!

As discussed above, our model accounted for thdl sima of the N40O in reversal
anomalies without separate mechanisms for lexwagss and semantic interpretation, and
addresses a wide range of N40O effects which teedik accounts would ascribe either to
lexical access or to subsequent semantic integrat@yucially, our model accounts for the
absence of an N400 in reversal anomalies becagbessutences do not trigger a re-
assignment of the role of eggs in a compositioeptesentation of the meaning of the

sentence; instead the implicit internal repres@matontinues to treat the eggs as having been
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eaten, consistent with the model’s knowledge ofcibrestraints affecting natural events, in
which eggs lack attributes that would allow thenséove as agents of eating.

While both the retrieval-integration model and 8@ model account for the absence
of N400’s in reversal anomalies, the SG model doewithin the context of a more complete
account of the factors that do and do not influeheeN400, while the retrieval-integration
model has yet to be extended beyond accounting $oibset of the relevant findings. Further
research will be required to determine whetherdtieeval-integration model can be
extended to encompass the range of N400 findingsnepassed by the SG model. There are
also challenges to the view that the P600 shoulthdneght of as reflecting the process of
semantic integration as it ordinarily occurs ingaage processing, as we discuss below.

One basic challenge to the retrieval-integratiordefs claim that the P600 reflects
semantic integration is the fact that many varigihat should influence the amount of
change in a representation of sentence meaninky,asucloze probability or surprise,
consistently influence N400 but do not necessanflyence P600 amplitud&s?®®? Some
studies report influences of cloze probability gpost N400 positivit}* % and this finding
might be taken as consistent with the retrievadgnation model. However, these influences
consistently show a frontal topographical distrbnf different from the parietal P600 effects
obtained in reversal anomalies and related masetedding many researchers to suggest that
these two ERP positivities reflect functionallytiist processés. Furthermore, the influence
of cloze probability on the frontal positivity doaet seem to be influenced by degree of
semantic similarity, as would be expected if it walated to the change in a representation of
sentence meaning. Instead, the effect is dichotspntbat is, larger for unexpected words
independent of their semantic similarity with exigecword$§® which has been taken to
suggest that the frontal positivity reflects spiedéxical predictions. These findings appear to
challenge any model linking the P600 (without fertdifferentiation) to a change in the

representation of sentence mearhg
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The functional basis of the late positive ERP congmis we have described is not
addressed by our model and requires further inyatsbin to be more fully understood. It is
true that P600 responses have been observed tbeaavige of linguistic violations and
irregularities, including reversal anomafte¥, syntactic violation¥, and garden path
sentence¥, as well as pragmatic processes (see ré¥jefihis has been taken to suggest that
the P600 might reflect combinatorial aspects ofjlsme processing, either related to syiftax
or to semantic integration as assumed in the vetriategration modéf. There is, however,
an alternative perspective, in which the P600 im@ted as specific to language processing
(either syntactic processes or semantic integrppiense but to a more general process that
may be associated with more conscious, delibeaatd effortful aspects of processing which
may result in adjustments to the initial implicpresentation of meaning reflected in the
N400. Several researchers have pointed out tha®®00 shares properties with thé¥3
which is elicited by the occurrence of oddball stinfjsuch as a rare high tone among much
more frequent low tones), with the component’sriayedepending on stimulus complexity.
This component is thought to signal an explicijsise response and a corresponding update
in working memory*. This P600-as-P3 perspective naturally explaiasothserved sensitivity
of P600 effects to task demands and attentionalstdadeed, P600 effects are strongly
reduced or absent when there is no active taskhenuhe task is unrelated to the linguistic
violation™. In contrast, N400 effects can be obtained dupiassive reading and even during
unconscious processing such as within the atteaitidimk’>. Thus, from this view, the P600
differs from the N400 in two ways. It belongs toanponent family that responds to a wider
range of expectation violations while the N400Ogsdfic to the formation of a representation
of meaning. Further, the N400 may reflect an auten@and implicit process while the P600
may be associated with a higher level of contral attention, allowing it to be affected by

additional constraints that the semantic updategqe® underlying N400 amplitudes misses

37



out on. As noted above, these issues should bstiga&ed in future research to be more fully
understood.

In general, the current work opens up an oppondoitextensive further
investigations, addressing a wide range of behalvas well as neural aspects of language
processing. One interesting finding that shoulddéressed in future work is the finding that
N400s were influenced by categorical relationshg,(semantic priming, see Fig. 2f) while
being unaffected by sentence truth, at least imteehstatements: The N400 is equally small
in the false sentence “A robin is not a bird” ahd true sentence “A robin is a bird”, and is
equally large in the true sentence “A robin is @aekhicle” and the false sentence “A robin is
a vehicle”™. It is important to note that sentence truth isthe same as expected sentence
meaning, and that to understand the influence gat@n on meaning expectations, one needs
to take into account the pragmatics of negdtiéh Specifically, negation is typically used to
deny a supposition, and in the absence of discammsixt, this supposition must be
grounded in general knowledgeThus, when used in short and isolated sentenegstion
is typically used to deny something that is paraminvoked schema (e.g., “a whale is not a
fish”). “Robin” does not invoke a schema which ubds semantic features of “vehicle” so
that “A robin is not a vehicle” is not an expecsahtence meaning, even though it is true. On
the other hand, “robin” does invoke a schema whicludes semantic features of “bird” so
that something that is part of the schema of “bird{jht be expected to be denied (e.g., “A
robin is not a bird that flies south during wint&’fine). Follow-ups taking the pragmatics of
negation into account and providing more conteringtd that N40Os are indeed modulated
by sentence trufiand plausibility”. Our model currently has no experience with sergsn
that describe properties of classes of objectseatences like ‘a whale is not a fish’ do, but
such sentences could be incorporated in an extensithe model, allowing further research
to investigate whether the pattern of semantic tgpg@en in such sentences can be captured

by our account of N4AOO amplitudes as change irobahilistic representation of meaning.
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Furthermore, it remains to be explored how well$ii& model can predict behavioral
measures of sentence processing. Given the exéeagigience reviewed above that the
update of an implicit probabilistic representatadimeaning is only one of the processes that
occur during language processing, it seems likedy & full account of overt behavioral
responses would require a fuller model capturimgé¢hother processes. The beauty of ERPs is
that they may index distinct aspects of these @m®®E® and can thus speak to their
neurocognitive reality even though several sucleggses might jointly influence a specific
behavioral measure. To fully address behaviorptbdel will likely need to be integrated into
a more complete account of the neuro-mechanisticgsses that take place during language
processing, including the more controlled and #iberrelated processes that may underlie
the P600. In addition, the model’'s query languaggtaaining corpus will need to be
extended to address the full range of relevant pimema, including other ERP components
(e.g., orthographic and syntactic ERPs) as wealigsals that have been detected using other
measurement modaliti®s’”

While extending the model will be worthwhile, itvetheless makes a useful
contribution to understanding the brain processeedying language comprehension in its
current simple form, departing from constructs plaged by traditional language processing

theorie§ 1011

that have lingered on in many previous accounte@functional basis of the
N400. The model’s successes in capturing a divesdg of empirically observed neural
responses suggest that the principles of semapqresentation and processing it embodies

may capture essential aspects of human languagerebension.
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Online Methods

We begin by describing the implicit probabilistiebry of meaning underlying the
Sentence Gestalt (SG) model and relate the upotatike model to other probabilistic
measures of surprise. Next we describe the nevarsicrupdate driven learning rule used in
simulating the reduction in the incongruity effecie to repetition. We then provide details
on the model’s training environment as well asgraocols used for training the model and
for the simulations of empirical findings. Finallye describe simulations conducted with an
SRN. Figure 1 in the main text presents the SG ortarchitecture and the processing flow
in the model.

Implicit probabilistic theory of meaning

The theory of meaning embodied in the Sentenceat@sbdel holds that sentences
constrain an implicit probabilistic representatafrihe meanings speakers intend to convey
through these sentences. The representation Iimp that no specific form for the
representation is prescribed, nor are - in the ig¢m@m of the theory - specific bounds set
on the content of the representation of meaningninspecific implementation of the theory,
the content of the representation of meaning isqileed by the range of possible probes and
gueries, which in the case of our implementatiomespond to the vectors encoding the pairs
of thematic roles and their fillers. Sentencesvéeeed as conveying information about
situations or events, and a representation of mgdsitreated as a representation that
provides the comprehender with a basis for estimgatie probabilities of aspects of the
situation or event the sentence describes. To wafis we characterize the ensemble of
aspects as an ensemble of queries about the @uthneach query associated with an
ensemble of possible responses. The query-answerisaused instead of directly providing
the complete event description at the output laydeep the set of probes and fillers more

open-ended and to suggest the broader framewarkhhdask of sentence comprehension
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consists in building internal representations tzat be used as a basis to respond to ptobes
In the general form of the theory, the queries doahge widely in nature and scope
(encompassing, for example, whatever the compretesibuld expect to observe via any
sense modality or subsequent linguistic input, githee input received so far). In
implementations to date, at least four differergrgiformats have been considered "
including a natural language-based question anderfermat (Fincham & McClelland,
1997, Abstract). Queries may also vary in theibaitality of being posed (hereafter called
demand probability and the correct answer to a particular query bwayncertain, since
sentences may be ambiguous, vague or incompletey Aenet of the theory is that aspects of
meaning can often be estimated without being eiglidescribed in a sentence, due to
knowledge acquired through past experiéhcéf events involving cutting steak usually
involve a knife, the knife would be understood, rewethout ever having been explicitly
mentioned in a sentence.

The theory envisions that sentences are uttersuations where information about
the expected responses to a probabilistic sampleeries is often available to constrain
learning about the meaning of the sentence. Waeh information is available, the learner
is thought to be (implicitly) engaged in attemptioguse the representation derived from
listening to the sentence to anticipate the exple@sponses to these queries and to use the
actual responses provided with the queries to ihagstimates of the probabilities of these
responses in line with their probabilities in twieonment. This process is thought to occur
in real time as the sentence unfolds; for simplitits modeled as occurring word by word as
the sentence is heard.

As an example, consider the sequence of words rifdne eats’ and the query, ‘What
does he eat’? What the theory assumes is thantvieonment specifies a probability

distribution over the possible answers to this mwathy other questions, and the goal of
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learning is to form a representation that allowvesse¢bmprehender to match this probability
distribution.

More formally, the learning environment is treaéedproducing sentence-event-
description pairs according to a probabilistic gatiee model. The sentence consists of a
sequence of words, while the event-description istgsf a set of queries and associated
responses. Each such pair is calle@eampleThe words in the sentence are presented to the
neural network in sequence, and after each woedsyktem can be probed for its response to
each query, which is conditional on the words pnte so far (we use, to denote the
sequence of words up to and including woydThe goal of learning is to minimize the
expected value over the distribution of examplea pfobabilistic measure (the Kullback-
Leibler divergenceDy,) of the difference between the distribution oflmabilitiesp over
possible responsego each possible query and the model’s estimatg#fsthe distribution of
these probabilities, summed over all of the quegiescurring after each word, and over all of
the words in the sentence. In this sum, the camioh of each query is weighed by its
demand probability conditional on the words seefasaepresentep(gjw,). We call this the

expected value E of the summed divergence meagtitten as:

E( ) palwn) D (pCrla, wllp(rla, wa)
n q

In this expression the divergence for each quegy(p(r|q,wn)||p(r|g,w.)), is given by

Z p(rlg, wa) log (%)

It is useful to view each combination of a quggnd sequence of wordg, as a context,
henceforth calle€. The sequence of words ‘the man eats’ and the dquérgt does he eat?’
is an example of one such conteXb simplify our notation, we will consider each

combination ofg andw;, as a context, so that the divergence in conté&xtwritten Dg (C), is

Y. p(r|C)log (%). Note thaDy, (C) equals 0 when the estimates match the probaisiliti
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(that is, wherp(r|C) = p(r|C) for allr) in contextC, since log(x/x) = log(1) = 0. Furthermore,
the expected value of the summed divergence measQrié the estimates match the
probabilities for allC.

Because the real learning environment is rich@odabilistic, the number of possible
sentences that may occur in the environment idimtks and it would not in general be
possible to represent the estimates of the comditiprobabilities explicitly (e.g. by listing
them in a table). A neural network solves thisgbem by providing a mechanism that can
process any sequence of words and associated gjtleaiteare within the scope of its
environment, allowing it to generate appropriatingastes in response to queries about
sentences it has never seen béfore

Learning occurs from observed examples by stoch@stdient descent: A training
example consisting of a sentence and a correspgeinof query-response pairs is drawn
from the environment. Then, after each word ofdtetence is presented, each of the queries
is presented along with the response that is parddit in the example. This response is
treated as the target for learning, and the matjekts its weights to increase its probability
of giving this response under these circumstandéss procedure tends to minimize the
expected value of the summed divergence measurdleenvironment, though the model’s
estimates will vary around the true values in pcacas long as a non-zero learning rate is
used. In that case the network will be sensitiveetent history and can gradually change its
estimates if there is a shift in the probabilitid®vents in the environment.
Theimplemented query-answer format and standard network learningrule

In the implementation of the model used heregneries presented with a given
training example can be seen as questions aboibuats of the possible fillers of each of a
set of possible roles in the event described byémence. There is a probe for each role,
which can be seen as specifying a set of quemesfar each of the possible attributes of the

filler of the role in the event. For example, thelge for the agent role can be thought of as
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asking, in parallel, a set of binary yes-no questjimne about each of several attributes or
featured of the agent of the sentence, with the possildpaeses to the question being 1 (for
yes the feature is present) or O (the featuretipresent). For example, one of the features
specifies whether or not the role filler is malettingp(v|f,C) represent the probability that
the feature has the valuen contextC (where now context corresponds to the role being
probed in the training example after tith word in the sentence has been presentieel)

p(|f.C)

p(v|f,(:))' Writing the terms of the sum

divergence can be written ¥s_, o p(v|f, C) log(

explicitly, this becomeg(1|f, C) log (%) + p(0|f, C) log (%) Using the fact that

the two possible answers are mutually exclusiveextdustive, the two probabilities must
sum to 1, so thai(0f,C) = 1 —p(1[f,C); and similarly,0o(0ff,C) = 1 —po(1[f,C). Writing p(f|C)
as shorthand fgu(1|f,C) ando(f|C) for o(1[f,C), and using the fact that lagb) = log@) —
log(b) for all a,b,the expression fddg,(f,C) becomes
(p(f1O) log(p(f10)) + (1 = p(fI1C)) log(1 — p(fIC)))
—(p(f10) log(p(f10)) + (1 = p(f1C)) log(1 = p(f10)))

The first part of this expression contains onlyisstvmental probabilities and is
constant, so that minimizing the expression as alevis equivalent to minimizing the second
part, called theross-entropy C§,C) between the true and the estimated probabildy ttine
value of featurd = 1 in contexC:

CE(f,C) = —(p(f10) log(p(f10)) + (1 = p(f1C)) log(1 — p(f1C)))
The goal of learning is then to minimize the sunthig quantity across all features and
situations.

The actual value of the feature for a particulde o a randomly sampled training
exampleeis either 1 (the filler of the role has the feajuor O (the filler does not have the
feature). This actual value is the target valuelusdraining, and is representedt@iCe),
where we us€. to denote the specific instance of this contexhetraining example (note
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that the value of a feature depends on the praledir the training example, but stays
constant throughout the processing of each of threlsvin the example sentence). The
activationa of a unit in the query network in conte24 a(f|Ce), corresponds to the network’s
estimate of the probability that the value of fieigture is 1 in the given context; we ase
instead ofpto call attention to the fact that the probabiéstimates are represented by unit
activations. Theross-entropypetween the target value for the feature and tblegiility
estimate produced by the network in response tgitren query after word then becomes:
CE(f,Ce) = —(t(f|Ce) log(a(f|Ce)) + (1 — t(f1Ce)) log(1 — a(f]Ce)))
To see why this expression represents a sampledhdie used to estima@&(f,C) above, it
is useful to recall that the value of a featura igiven context varies probabilistically across
training examples presenting this same contextekkample, for the context ‘the man eats
..., the value of a feature of the filler of the igaut role can vary from case to case. Over the
ensemble of training examples, the probability t{ffE€.) = 1 corresponds to(f|C), so that
the expected value &ff|C,) over a set of such training examples willd§g#C), and the
average value a@E(f,Cs) over such instances will approxim&&(f,C).

Now, the network uses units whose activatas given by the logistic function of its
net input, such that = 1/(1 + e~ ™¢), where the net input is the sum of the weighted
influences of other units projecting to the unigimestion, plus its bias term. As has long
been knowf?, the negative of the gradient of this cross-entnoeasure with respect to the
net input to the unit is simplyf|Ce) —a(f|Ce). This is the signal back-propagated through the
network for each feature in each context duringdadad network training (see section
simulation details/ training protocdbr more detail).

Probabilistic measures of the surprise produced by the occurrence of aword in a
sentence

Others have proposed probabilistic measures cduh@rise produced by perceptual or
linguistic inputs”?> In the framework of our approach to the charaaéon of sentence
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meaning, we adapt one of these propd§adsd use it to propose measures of three slightly
different conceptions of surprise: The normativeogse, the subjective explicit surprise, and
the implicit surprise — the last of which corresgsrlosely to the measure we use to model
the N400.

We define the normative surprise (NS) resultimpfrthe occurrence of thrth word
in a sentence as the KL divergence between the environmentatgmined distribution of
responses to the set of demand-weighted quendsefore and after the occurrence of word

Wi:

B p(rlg, wn)
NS(w,) = zq:p(qlwn) Z p(rlg,wn) log (m)

rlq,s

If one knew the true probabilities, one could cklteithe normative surprise and attribute it
to an ideal observer. In the case where the cuargbinary questions about features as in

the implemented version of the SG model this e)gioasbecomes:

p(flq, wn) )

NS(Wn) = ;p(qlwn) (p(fIQJ Wn) log (p(flq;wn—l)

1-p(flg,wn)
1- P?ZﬂCI?W‘:—ﬂ))

+ (1= p(flg, ) log (
To keep this expression simple, we treat g as ranging over the features of the fillers of all
of the probed roles in the sentence.
The explicit subjective surprise ESS treats a hupsaticipant or model thereof as
relying on subjective estimates of the distributtdmesponses to the set of demand-weighted

gueries. In the model these are provided by thigaionsa of the output units

corresponding to each feature:
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a(flg, wn) )

ESS(wy) = ;p(qlwn) (a(f |9, wn)log (a(flq,Wn-1)

1 —a(flg,wn)
1- ac(lﬂ;wv:—ﬂ))

+ (1 - a(flg,wn) log<

Our third measure, the implicit surprise (1S) igrababilistically interpretable
measure of the change in the pattern of activatiar the learned internal meaning
representation (corresponding to the SG layeremtlodel). Since the unit activations are
constrained to lie in the interval between 0 anthé&y can be viewed intuitively as
representing estimates of probabilities of implisiderlying meaning dimensions or
microfeature&' that together constrain the model’'s estimates egttplicit feature
probabilities. In this case we can define the iaifpsurprise as the summed KL divergence
between these implicit feature probabilities befame after the occurrence of wardusing
a; to represent the estimate of the probability thatfeature characterizes the meaning of the

sentence an(l — q;) to represent the negation of this probability:

ZCOED) (a"(Wn) 10g< an,) ) +(1 - a;(wy))log <—1 — i) >>

; a; (Wn—l) 1- a; (Wn—l)

The actual measure we use for the semantic up8akeas defined in the main text is similar
to the above measure in being a measure of therelifte or divergence between the

activation at wordh and wordn-1, summed over the units in the SG layer:

SUGR) = ) 1aiWn) = @ (W)
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The SU and IS are highly correlated and have theesainimum (both measures are equal to
0 when the activations before and after worte identical). We use the analogous measure
over the outputs of the query network, called thaieit subjective update (ESU) to compare

to the SU in the developmental simulation repomtetthe main text:

ESUw,) = Z p(qlwy) 1a(flq, wp) — a(flq, wp_1)|
q

As before we treat g as ranging over all of the features of the fillers of all of the probed
roles in the sentence. In calculating the ESU or the ESS, the queriesaataa with the
presented sentences are all used, p(thw,,) = 1 for each one.

The simulation results presented in the maingbriv the same pattern in all cases if
the ESS and IS are used rather than the SU and ESU.
Semantic updatedriven learning rule

The semantic update driven learning rule introdunedis article for the Sentence
Gestalt model is motivated by the idea that lateninig words in a sentence provide
information that can be used to teach the netwamdptimize the probabilistic representation
of sentence meaning it derives from words comintiezan the sentence. We briefly
consider how this idea could be applied to genesigtgals for driving learning in the query
network, in a situation where the teaching sigmati{e form of a set of queries and
corresponding feature values) corresponding t@theal features of an event are available to
the model only after the presentation of the lastdwof the sentence (designated wiljd In
that situation, the goal of learning for the lastrdvcan be treated as the goal of minimizing
the KL divergence between the outputs of the quetwork after wordN and the target
values of the features of the evfig,e). As in the standard learning rule, this reducethé

cross-entropy, which for a single feature is gitbagn
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CE(f,q,wy) = —(t(flg, e) log(a(flg, wy)) + (1 — t(flq, ) log(1 — a(flg, wy)))

A single {sentence, evenpair chosen from the environment would then pdeva
sample from this distribution. As is the casehia standard training regime, the negative of
the gradient with respect to the net input to &gioutput feature unit in the query network
after a given probe is simptyf|q,e) — a(f|q, wy). This is then the error signal propagated
back through the network. To train the network kmbetter estimates of the feature
probabilities from the next to last word in the tegrice (wordN-1), we can use the difference
between the activations of the output units afterdiN as the teaching signal for wokd1,
so for a given feature unit the estimate of theligmat with respect to its net input simply
becomesi(f|q, wy) — a(f|q, wy—1). Using this approach, agf|q,wy) comes to approximate
t(flg,e it thereby comes to approximate the correct tahgea(f|g, N-1). This cycle repeats
for earlier words, so that agf|g, N-1) comes to approximagéf|q, N) and therefor&(f|q, €) it
also comes to approximate the correct teacheaa(ffa, N-2), etc. This approach is similar to
the temporal difference (TD) learning method userkinforcement learnifigin situations
where reward becomes available only at the end efpgsode, except that here we would be
learning the estimates of the probabilities forohlthe queries rather than a single estimate of
the final reward at the end of an episode. Thithoekis known to be slow and can be
unstable, but it could be used in combination wetirning based on episodes in which
teaching information is available throughout thegaissing of the sentence, as in the standard
learning rule for the SG model.

The semantic update based learning rule we propdsads the idea described above,
based on the observation that the pattern of dwiivaver the SG layer of the update network
serves as the input pattern that allows the quetwark to produce estimates of probabilities
of alternative possible responses to queries #ftes seen some or all of the words in a
sentence. Consider for the moment an ideally tchimetwork in which the presentation of
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each word produces the optimal update to the Sf@septation based on the environment it
had been trained on so far, so that the activattise output of the query network would
correspond exactly to the correct probability eates. Then using the SG representation
after wordn+1 as the target for training the SG representatfter wordn would allow the
network to update its implicit representation bagedvordn to capture changes in the
environmental probabilities as these might be cgeden a sentence. More formally, we
propose that changing the weights in the updatgar&tto minimize the Implicit Surprise
allows the network to make an approximate updates ionplicit probabilistic model of
sentence meaning, providing a way for the netwoikarn from linguistic input alone. The
negative of the gradient of the Implicit Surprisghwespect to the net input to SG unatfter
wordn is given bya;(w,,) — a;(w,,_;). This is therefore the signal that we back prapag
through the update network to train the connectdéureng implicit temporal difference
learning. As noted in the main text, the sum dkierSG units of the absolute value of this
guantity also corresponds to the SU, our model’6(Nebrrelate. The model would not be
able to learn language based on this semantic @pldaen learning rule alone. We assume
that language learning proceeds by a mixture oéeggpce with language processed in the
context of observed events (as in the standanditigaregime) and processed in isolation (as
with the semantic update driven learning rule) sgag with changing proportions across

development. Future modeling work should explore igsue in more detail.

Simulation Details

EnvironmentThe model environment consists of {sentence, evealtis
probabilistically generated online during train@grording to constraints embodied in a
simple generative model (see Fig. 9a). The sensem@esingle clause sentences such as “At

breakfast, the man eats eggs in the kitchen”.
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Agents (4) woman man boy girl
(chosen according to
base-rate probability)
Actions (12) drink fish feed plant water play write wear like look at
(randomly chosen)
Situations (8) 5 2 x E N 5 presepted with all
(depend on actions) , L H H H H é 36 objects equally often
Objects (36) r g 2 § z TlEl 1 |3 s 313/ 8l 8|35l o gi i
£ i § i HE

(depend on actions + i§“§§“§§ s g i 8 L g H & LI & §a§§33553§§g
partly situations) \\\1 ; § / l ‘)&/ \
Locations (9) ) § 3
(depend on objects) Kitch 3 lake 2 park garden ,§ living room veranda
Sentence structure:  For actions with situation For actions without situation

90% active: [Situation, 50%] [Agent] [Action] [Patient] [Location] [Agent, if any] [Action] [Patient] [Location, if any]

10% passive: [Situation, 50%)] [Patient] [Action] [Agent] [Location]
b

Hand crafted representations Co-occurrence based representations

\‘.-' ‘.
1

wm%ﬁéﬁéﬁgﬁﬁwﬁé?

1

N L

Figure 9. a. The sentence/ event generator used to traimibael. Bar width corresponds to
relative probability. First, one out of twelve amtis is chosen with equal probability. Then,
for every action except one (“look at”) an agentitsosen (“woman” and “man” each with a
probability of .4, “boy” and “girl” with a probability of .1). Next, a situation is chosen
depending on the action. Some actions can occtwarpossible situations, some in one, and
some without a specified situation. Even if anaxcbccurs in a specific situation, the
corresponding word is presented only with a probgbof .5 in the sentence while the
situation is always part of the event representatibhen, depending on the action (and in the
case that an action can occur in two possible situes, depending on the situation) an
object/patient is chosen. For each action or sitaiexcept for “like” and “look at” for
which all 36 objects are chosen equally often) ¢hisra high probability and a low
probability object (if the agent is “man” or “womanthe respective high/low probabilities
are .7/.3, if the agent is “girl” or “boy”, the prbabilities are .6/.4). The high and low
probability objects occurring in the same specéation context are always from the same
semantic category, and for each category, theeethsrd object which is never presented in
that action context and instead only occurs inuhspecific “like” or “look at” contexts (to
enable the simulation of categorically related ingauities; these are the twelve rightmost
objects in the figure; here bar width is larger tharobability to maintain readability).
Possible sentence structures are displayed belo®intilarity matrices of the hand-crafted
semantic representations used for the current m@eft) and representations based on a
principal component analysis on word vectors detifrem co-occurrences in large text
corpord®. The correlation between the matrices is r = .73.
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They are stripped of articles as well as inflectiomarkers of tense, aspect, and number, and
are presented as a sequence of constituents, easisting of a content word and possibly
one closed class word such as a preposition oiveassrker. A single input unit is dedicated
to each word in the model’s vocabulary. In thenegle above, the constituents are “at
breakfast”, “man”, “eats”, “eggs”, “in kitchen”, dmpresentation of the first constituent
corresponds to activating the input units for “atid “breakfast”.

The events are characterized as sets of role fifies, in this case: agent — man, action
— eat, patient — eggs, location — kitchen, situatibreakfast. Each thematic role is
represented by a single unit at the probe and oldager. For the filler concepts, we used
feature-based semantic representations such ttlatceacept was represented by a number of
units (at the probe and output layer) each cormedipg to a semantic feature. For instance,
the concept “daisy” was represented by five unitke units have labels that allow the reader
to keep track of their roles but the model is ritecded by the labels themselves, only by the
similarity relationships induced by these labdter example, the semantic features of
“daisy” are labeled “can grow”, “has roots”, “hastals”, “yellow”, and “daisy”. The feature-
based representations were handcrafted to creadedsimilarities between concepts roughly
corresponding to real world similarities as in oth®dels of semantic representaffthi. For
instance, all living things shared a semantic feaftcan grow”), all plants shared an
additional feature (“has roots”), all flowers shéimne more feature (*has petals”) and then
the daisy had two individuating features (“yelloarid its name “daisy”) so that the daisy and
the rose shared three of their five semantic featuhe daisy and the pine shared two
features, the daisy and the salmon shared onlyeatere, and the daisy and the email did not
share any features (see the Supplementary Talblealdomplete list of concepts and
features). Comparison of a similarity matrix of gd@ncepts based on our hand-crafted
semantic representations and representations basagrincipal component analysis (PCA)

performed on semantic word vectors derived fronocourrences in large text corpbta
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showed a reasonable correspondence.{3; see Fig. 9b), suggesting that the simiésrit
among the hand-crafted conceptual representatoughty matched real world similarities
(as far as they can be derived from co-occurretatesscs).

Training protocol.The training procedure approximates a situatiomhich a
language learner has observed an event and thusduasplete representation of the event
available, and then hears a sentence about iasderning can be based on a comparison of
the current output of the comprehension mechanrsirtlze event. It is important to note that
this is not meant to be a principled theoreticaliasption but is rather just a practical
consequence of the training approach. In genemljamnot assume that listeners can only
learn when they simultaneously experience a dest@vent, first, because neural networks
can generaliZé and second, because the SG model can also |eaptysrom listening or
reading based on the new learning rule driven bysttmantic update (see sect8amantic
update driven learning ruleabove) Also, observed events can be ambiguous and language
can provide a particular disambiguating perspedaiivan event that cannot be gleaned
directly from the event itséft The SG model implements a simplification of titaation in
the sense that events in the model are always ugaous and complete. In addition, the
training procedure implements the assumption tkegriers anticipate the full meaning of
each presented sentence as early as pd€¢tbiso that the model can learn to
probabilistically preactivate the semantic featweall role fillers involved in the described
event based on the statistical regularities iemgronment.

Each training trial consists in randomly generaingew §entence, evenpair based
on the simple generative model depicted in Figa@a, then going through the following
steps: At the beginning of a sentence, all unigssat to 0. Then, for each constituent of the
sentence, the input unit or units representingthestituent are turned on and activation flows
from the input units and — at the same time viament connections - from the SG units to

the units in the first hidden layer (Hidden 1), drain these to the units in the SG layer where
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the previous representation (initially all O’syéplaced by a new activation pattern which
reflects the influence of the current constituditie activation pattern at the SG layer is then
frozen while the model is probed concerning thenedescribed by the sentence in the query
part of the model. Specifically, for each probesiiom, a unit (representing a thematic role)
or units (corresponding to feature-based represensaof fillers concepts) at the probe layer
are activated and feed into the hidden layer (Hid2ewhich at the same time receives
activation from the SG layer. Activation from th& @nd the probe layer combine and feed
into the output layer where the units represertiegcomplete role-filler pair (i.e., the unit
representing the thematic role and the units cparding to the feature-based representation
of the filler concept) should be activated. Afteck presented constituent, the model is
probed once for the filler of each role and onaelie role of each filler involved in the
described event, and for each response, the maaii@tion at the output layer is compared
with the correct output. After each response, tlaglignt of the cross-entropy error measure
for each connection weight and bias term in theyjnetwork is back-propagated through
this part of the network, and the correspondingyives and biases are adjusted accordingly.
At the SG layer, the gradient of the cross-entregr measure for each connection weight
and bias term in the update network is collectede responses on all the probes for each
constituent before being back-propagated throughpidrt of the network and adjusting the
corresponding weights and biases. We used a leprata of 0.00001 and momentum of 0.9
throughout.

Simulation of empirical findingg8ecause the model’s implicit probabilistic
representation of meaning and thus also the semandiate at any given point is determined
by the statistical regularities in the training, $etthe description of the simulations below we
try to make clear how the observed effects depentth® training corpus (please refer to Fig.
7a).

For the simulations of semantic incongruity, clpzebability, and categorically
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related semantic incongruity, for each conditioe agent (“man”) was presented once with
each of the ten specific actions (excluding onikel and “look at”). The agent was not
varied because the conditional probabilities fer ldter sentence constituents depend very
little on the agents (the only effect of the chaaéagent is that the manipulation of cloze
probability is stronger for “man” and “woman”, nalyper vs. .3, than for “girl” and “boy”,
namely .6 vs. .4; see Fig. 7a). For the simulatibsemantic incongruity, the objects were the
high probability objects in the congruent condit{ery., “The man playshess’) and

unrelated objects in the incongruent condition.(€Tthe man playsalmori). For the
simulation of cloze probability, the objects/patgewere the high probability objects in the
high cloze condition (e.g., “The man plagfgess’) and the low probability objects in the low
cloze condition (e.g., “The man play®nopoly’). For the simulation of categorically related
semantic incongruities, the congruent and incongraenditions from the semantic
incongruity simulation were kept the same and texe an additional condition where the
objects were from the same semantic category dsigheand low probability objects related
to the action (and thus shared semantic featurd® atutput layer, e.g., “The man plays
backgammot), but were never presented as patients of thatiBp action during training (so
that their conditional probability to complete fhr@sented sentence beginnings was 0).
Instead, these objects only occurred as patierttseaiinspecific “like” and “look at” actions
(Fig. 7a). For all these simulations, there werétd@is in each condition, and semantic
update was computed based on the difference ira$€ activation between the presentation

of the action (worah-1) and the object (word).

For the simulation of the influence of a word’s pios in the sentence, we presented
the longest possible sentences, i.e. all senteéhaéfad occurred during training with a
situation and a location, including both the vemsith the high probability ending and the

version with the low probability ending of thes@tsnces. There were 12 items in each
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condition, and semantic update was computed oeecdhrse of the sentences, i.e. the
difference in SG layer activation between the fanstl the second word provided the basis for
semantic update induced by the second word (thetadke difference in SG layer activation
between the second and the third word provided#ses for semantic update induced by the
third word (the action), the difference in SG lagetivation between the third and the fourth
word provided the basis for semantic update indungetthe fourth word (the object/ patient),
and the difference in SG layer activation betwdenfourth and the fifth word provided the
basis for semantic update induced by the fifth witié location). It is interesting to consider
the conditional probabilities of the constituentgiothe course of the sentence: Given a
specific situation, the conditional probabilitytbe presented agent (“man”; at the second
position in the sentence) is .36 (because the tiondl probability of that agent is overall .4,
and the probability of the sentence being an acréence such that the agent occurs in the
second position is .9; see Fig. 7a). The conditipnabability of the action (at the third
position) is 1 because the actions are determigdtddsituations (see section on reversal
anomalies, below, for the rationale behind thigiteve relationship between the situation
and the action). The conditional probability of thigects (at the fourth position) is either .7
(for high probability objects) or .3 (for low prabifity objects) so that it is .5 on average, and
the conditional probability of the location (at thiigh position) is 1 because the locations are
determined by the objects. Thus, the constituerasditional probabilities do not gradually
decrease across the course of the sentences.ntlmgfthat semantic update nonetheless
gradually decreased over successive words in segences (sdeesulty suggests that the
SG layer activation does not perfectly track canddl probabilities. Even if an incoming
word can be predicted with a probability of 1.0tlsat an ideal observer could in principle
have no residual uncertainty, the presentatioh@item itself still produces some update,
indicating that the model retains a degree of uag#y, consistent with the ‘noisy channel’

modef®. In this situation, as we should expect, the 8tipates the presentation of the item
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more strongly as additional confirmatory evidersadcumulated, so that later perfectly
predictable constituents are more strongly antteghghan earlier ones. In summary, the
model’s predictions reflect accumulation of prewietinfluences, rather than completely
perfect instantaneous sensitivity to probabilisbastraints in the corpus.

For the simulation of lexical frequency, the higaduency condition comprised the
high probability objects from the ten semantic gatees, the two high probability agents
(“woman” and “man”) and two high probability locatis (“kitchen” and “living room”). The
low frequency condition contained the ten low ptabty objects, the two low probability
agents (“girl” and “boy”) and two low probabilitptations (“balcony” and “veranda”). The
high and low frequency locations were matched paegwn terms of the number and diversity
of object patients they are related to (“kitcherdtained with “balcony”, “living room”
matched with “veranda”). Before presenting the highsus low frequency words, we
presented a blank stimulus to the network (i.eippnt pattern consisting of all 0) to evoke
the model’'s default activation which reflects tme@ding of base-rate probabilities in the
model’s connection weights. There were 14 itemsaich condition, and semantic update was
computed based on the difference in SG layer aativdbetween the blank stimulus (ware
1) and the high or low frequency word (ward

To simulate semantic priming, for the conditiorsefnantic relatedness, the low and
high probability objects of each of the ten sentaaliject categories were presented
subsequently as prime-target pair (e.g., “monopbBss”). For the unrelated condition,
primes and targets from the related pairs weressggaed such that there was no semantic
relationship between prime and target (e.g., “slméhess”). For the simulation of associative
priming, the condition of associative relatednesssested of the ten specific actions as
primes followed by their high probability patiersts targets (e.g., “play chess”). For the
unrelated condition, primes and targets were agaassigned such there was no relationship

between prime and target (e.g., “play eggs”). Taudate repetition priming, the high
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probability object of each semantic category was@nted twice (e.g., “chess chess”). For the
unrelated condition, instead of the same objebigh probability object from another
semantic category was presented as prime. Foriadiqy simulations, there were 10 items in
each condition, and semantic update was computeetilan the difference in SG layer
activation between the prime (womell) and the target (wond).

For the simulation of semantic illusions/ revelmabmalies, each of the eight
situations was presented, followed by the high abdiiy object related to that situation and
the action typically performed in that situationg(e “At breakfast, the egg=at..”). For the
congruent condition, the situations were presemitila possible agent and the action
typically performed in that situation (e.qg., “Atdakfast, the maeats..”) and for the
incongruent condition, with a possible agent andrmelated action (e.g., “At breakfast, the
manplants..”). There were eight items in each condition, aathantic update was computed
based on the difference in SG layer activation betwthe presentation of the second
constituent which could be an object or an agent,(82ggs” or “man”; wordh-1) and the
action (wordn). Please note that in the model environment, ithatsons predict specific
actions with a probability of 1. This prevented tngical words (i.e., the actions) from being
much better predictable in the reversal anomalyitmm where they are preceded by objects
(which in the model environment also predict spe@ttions with a probability of 1) as
compared to the congruent condition where theysreeded by agents (which are not
predictive of specific actions at all). Of coursgyations do not completely determine actions
in the real world. However, the rationale behine decision to construct the corpus in that
way to simulate the reversal anomaly experimeriyerberg and colleaguBsvas that the
range of plausibly related actions might be simfitarspecific situations and specific objects
such that actions are not much better predictabilea reversal anomaly than in the congruent
condition. A relevant difference between both ctinds was that in the reversal anomaly

condition the model initially assumed the sentencd® in passive voice, because during

58



training, sentences with the objects presentedrédifi@ actions had always been in passive
voice (see Fig. 7a). Thus, when the critical woabwpresented without passive marker (i.e.,
“by”), the model revised its initial assumptionstimat regard in the reversal anomaly
condition while there was no need for revisionha tongruent condition.

We also simulated a second type of semantic iliusibere a relationship between
two noun phrases is established prior to encourgehie verf® (e.g. “De speer heft de atleten
geworpen, lit: “The javelin has the athletebrowr’, relative to “De speer werd door de
atletengeworpen, lit: “The javelin was by the athletésrown’). For this simulation we
presented basically the same stimuli as for therabmantic illusion simulation, but with
Dutch word order and thus sentence structuresastde examine whether the same
mechanism allowing the model to account for theasdru illusion effects reported by
Kuperberg et al. would also hold when the verbrésented at the end of the sentence. Thus,
the relevant experimental conditions containedeser@s such as “The pine was by the man
watered.” (i.e., “The pine was watered by the manth Dutch word order; congruent
condition), “The pine has the man watered.” (i’FEhé pine has watered the man.” with Dutch
word order; semantic illusion/ reversal anomalydibaon) and “The pine was by the man
drunken.” (i.e., “The pine was drunken by the mamth Dutch word order; incongruent
condition). To be able to run this simulation, \edried a model on basically the same
training environment as the other model, but wiid $entence structures adjusted such that
active sentences were changed from e.qg., “The nag@rsithe pine.” to “The man has the
pine watered.” and passive sentences were changedThe pine was watered by the man.”
to “The pine was by the man watered.”. We also dddeadditional input unit representing
“has” and made “was by” be represented by a singiebecause both words now always
occurred in direct succession (e.g., Was bythe man watered.” instead of “waswatered
by the man.”). Apart from that, all parameters of thedel and training were kept the same.

This implementation does not completely corresporitie empirical experimetitin that in
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our simulation there was no specific relationshepaeen the agent and the action (i.e., the
man in the model environment is equally likely grfprm all 12 actions and thus was equally
likely to water something as he was to drink sommgghfor instance) while in the stimulus
material of the empirical experiment there wasecH probabilistic relationship between
the agents and the actions (i.e., athletes mightdre likely to throw something than to
summarize something). However, important for curpenmposes, this implementation
allowed to test whether the way the model accoiamntthe slight N40O increase in reversal
anomalies would be robust to changes in word orgerthe presentation of two noun phrases
prior to the presentation of the verb. For the $aton, there were eight items in each
experimental condition, and semantic update wascbea as the difference in SG layer
activation between the third constituent (“man”rd/in-1) and the fourth constituent (the
action, wordn).

To simulate the developmental trajectory of NAd@at we examined the effect of
semantic incongruity on semantic update (as desgt@dbove) at different points in training,
specifically after exposure to 10000, 100000, 2@0@@0000, and 800000 sentences. To
examine the relation between update at the SG Ey@update at the output layer (reflecting
latent and explicit estimates of semantic featuodabilities, respectively), at each of the
different points in training (see above) we comgdutes update of activation at the output
layer (summed over all role filler pairs) analoggus the activation update at the SG layer.

To simulate semantic priming effects on N400 aragkts during near-chance lexical
decision performance in a second language, we @aghthe model early in training when it
had been presented with just 10000 sentencesluasrdted in Figure 5a, at this point the
model fails to understand words and sentencegpiactivate the corresponding units at the
output layer. The only knowledge that is apparerihe model’s performance at the output
layer concerns the possible filler concepts forafent role and their relative frequency, as

well as a beginning tendency to activate the coagent slightly more than the others. Given
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the high base-rate frequencies of the possibletagénloes not seem surprising that the
model learns this aspect of its environment fiéstthis stage in training, we simulated
semantic priming as described above. In additisenehough this has not been done in the
empirical study, we also simulated associative prinand influences of semantic incongruity
in sentences (as described above).

For the simulation of the interaction between semancongruity and repetition, all
sentences from the simulation of semantic incotg(gee above) were presented twice, in
two successive blocks (i.e., running through thet fpresentation of all the sentences before
running through the second presentation) with conme weights being adapted during the
first round of presentations (learning rate = .@Bntences were presented in a different
random order for each model with the restrictidreg the presentation order was the same in
the first and the second block, and that the inoeggt and congruent version of each
sentence directly followed each other. The orderooiditions, i.e. whether the incongruent or
the congruent version of each sentence was prestraiewas counterbalanced across models
and items (i.e., for half of the models, the inaast version was presented first for half of
the items, and for the other half of the models,itftongruent version was presented first for
the other half of the items).

It is often assumed that learning is based on ptiedi errof>** Because the SG layer
activation at any given time represents the modeijdicit prediction or probability estimates
of the semantic features of all aspects of the tedescribed by a sentence, the change in
activation induced by the next incoming word carséen as the prediction error contained in
the previous representation (at least as fariagdvealed by that next word). Thus, in
accordance with the widely shared view that préeaficerrors drive learning, we used a
temporal difference (TD) learning approach, assgrtiat in the absence of observed events,
learning is driven by this prediction error congegithe next internal state. Thus, the SG

layer activation at the next word serves as thgetaor the SG layer activation at the current
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word, so that the error signal becomes the diffegan activation between both words, i.e.
SGy1— SG, (also see sectioBemantic update driven learning rubbove). There were 10
items in each condition, and semantic update wagpated during the first and second
presentation of each sentence as the differen8&itayer activation between the
presentation of the action (wonell) and the object (wond).

For the simulation of the influence of violatiorfsnord order (phrase structur@)we
presented two types of word order changes for santence, focusing on sentences starting
with a situation, because in these sentence®éser to keep changes in conditional
probabilities of semantic event features relatively when changing word order. For each
sentence, we presented (1) a version where we elldahg position of the action and the
patient (e.g., “On Sunday, the midre robinfeeds” compared to “On Sunday, the nieeds
the robin”; with semantic update computed as tlfferéince in SG layer activation between
the presentation of the agent (word) and the patient or action, respectively (woyd and
(2) a version where we changed the position oaitient and the action (e.g., “On Sunday,
feedsthe man the robin” compared to “On Sundhg, marfeeds the robin”; with semantic
update computed as the difference in SG layer @wbiv between the presentation of the
situation (wordn-1) and the action or agent, respectively (wapd For type (1), changing
position of action and patient, the conditionallyability of the semantic features associated
with the critical word (not at this position in teentence but in general within the described
event) is .7 in the condition with the changed worrder and 1.0 in the condition with the
normal word order. For type (2), changing positwdmagent and action, the conditional
probability of the semantic features associatetl Wie critical word (again, crucially, not at
this position in the sentence but in general withendescribed event) is 1.0 in the condition
with the changed word order and .4 in the conditiath the normal word order. Thus, while
changes in word order also entail changes in theuatrof semantic update of event features,

the design of the simulation ensures that influsrafevord order (syntax) and semantic
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update can be dissociated. Specifically, the sseproncerning the semantic features of the
described event was on average .15 in the condititinthe changed word order (.3 for type
(1) and 0.0 for type (2)) while it was on averagen.the condition with the normal word
order (0.0 for type (1), and .6 for type (2)). Tderere 16 items (8 of each type) in each
condition (i.e., normal vs. changed word order).
Simplerecurrent network model simulations

We trained a classic simple recurrent netWb&onsisting of an input and output
layer with 74 units each, as well as a hidden amdext layer with 100 units each) on the
same training corpus as the SG layer. Except ®athhitectural difference, all parameters
were kept the same. We then simulated influencesotdtions of word order (phrase
structure), reversal anomalies, and developmemtessribed above for the SG model. The
measure for surprisal that we set in relation tONdmplitudes consists in the summed
magnitude of the cross-entropy error induced byctireent word (worah).
Statistics

All reported statistical results are based on tars of the model each initialized
independently (with initial weights randomly vargibetween +/- .05) and trained with
independently-generated training examples as desstim sectiorSimulation Details/
Environmeni{N=800000, unless otherwise indicated). In anakogyubject and item analyses
in empirical experiments, we performed two typesrdlyses on each comparison, a model
analysis with values averaged over items withirheandition and the 10 models treated as
random factor, and an item analysis with valuesayed over models and the items (N
ranging between 8 and 16; please see the preveatiss for the exact number of items in
each simulation experiment) treated as random fa€teere is much less noise in the
simulations as compared to empirical experiment $hat the relatively small sample size
(20 runs of the model and 8 to 16 items per comaljtshould be sufficient. There was no

blinding. We used two-sided paired t-tests to araljifferences between conditions; when a
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simulation experiment involved more than one conspar, significance levels were
Bonferroni-corrected within the simulation experithelo test for the interaction between
repetition and congruity, we used a repeated measuralysis of variance (rmANOVA) with
factors Repetition and Congruity. To analyze whethe data met the normality assumption
for these parametric tests, we tested differene@égden conditions (for the t-tests) and
residuals (for the rmANOVA) for normality with tighapiro-Wilk test. Using study-wide
Bonferroni correction to adjust significance leviglsthe multiple performed tests, results did
not show significant deviations from normality (pdl > .11 for the model analyses and > .24
for the item analyses) except for the item analgbithie change in word ordegp € .048)

which might be due to the items in this simulatxperiment consisting of two types with
slightly different characteristics (see sect®&imulation of empirical findingabove); this item
analysis did not reach significance neither intthest (see caption of Fig. 4) nor in the
Wilcoxon signed rank tesp & .10) which does not depend on the normality @ggion. To
further corroborate our results we additionallytedsall comparisons with deviations from
normality at uncorrected significance levels <.8tg the Wilcoxon signed rank test; all
results remained significant. Specifically, in thedel analyses deviations from normality at
uncorrected significance levels were detectedifersemantic incongruity effect (Fig. Zes
.043) and the frequency effect (Fig. pe; .044), as well as for the difference between
categorically related incongruities and congru@mgletions (Fig. 2dp = .0053). Wilcoxon
signed rank tests confirmed significant effectserhantic incongruity (Fig. 2@;= .002) and
lexical frequency (Fig. 2q3 = .037), and a significant difference between gartieally

related incongruities and congruent sentence agations (Fig. 2dp = .002). In the item
analyses, deviations from normality at an uncoe@esignificance level were detected for the
difference between incongruent completions and sémalusions in the SG model
(Supplementary Fig. 1p = .012) as well as in the SRN (Supplementary Fig.= .043), and

for the difference between changed and normal waddr in the SRN (Supplementary Fig. 7;
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p =.011). Again, Wilcoxon signed rank tests conBdsignificant differences between the
incongruent completions and the semantic illusiarthe SG model (Supplementary Fig. 1i;
p =.0078) and the SRN (Supplementary Figp #;.039), as well as a significant influence of
word order in the SRNp(= .0004).

Using Levene’s test, we detected violations ofdegumption of homogeneity of
variances (required for the rmANOVA used to analyeeinteraction between repetition and
congruity; Fig. 6 and Supplementary Fig. 4) initeen analysisF,(3) = 12.05,p < .0001, but
not in the model analysif; < 1. We nonetheless report the ANOVA results fathkanalyses
because ANOVAs are typically robust to violatiorighes assumption as long as the groups
to be compared are of the same size. However, dii@uhlly corroborated the interaction
result from the item ANOVA by performing a two-&dl paired t-test on the repetition effects
in the incongruent versus congruent conditionsweadirectly tested the hypothesis that the
size of the difference in the model’'s N400 corela¢tween the first presentation and the
repetition was larger for incongruent than for coeymt sentence completions: incongruent
(first — repetition) > congruent (first — repetitlo Indeed, the size of the repetition effects
significantly differed between congruent and inaoregt conditionstgy= 10.99,p < .0001,
and the differences between conditions did notisogmtly deviate from normalityp = .44,
thus fulfilling the prerequisites for performinggetittest.

In general, systematic deviations from normality anlikely for the results by-model
(where apparent idiosyncrasies are most probaldytasampling noise), but possible in the
by-item data. Thus, while we present data averageditems in the figures in the main text
in accordance with the common practice in ERP rebda analyze data averaged over items,
for transparency we additionally display the dataraged over models as used for the by-

item analyses (see Supplementary Fig. 1-8).
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Code availability
All computer code used to run the simulations amlyaze the results will be made

available on github at the time of publication.
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Simulated effects

Example

N400 data

Reference

Basic effects

Semantic incongruity
Cloze probability
Position in sentence
Categorically related
incongruity

Lexical frequency
Semantic priming
Associative priming
Repetition priming

Reversal anomalies

Word order violation

Extensions

Age

Priming during near chance

[ take my coffee with cream and sugar/ dog.

Don’t touch the wet paint/ dog.

They wanted to make the hotel look more like
a tropical resort. So along the driveway they
planted rows of palms/ pines/ tulips.

sofa - bed

wind - mill

Every morning at breakfast.. the boys would eat/
... the eggs would eat/ ... the boys would plant

She is very satisfied with the ironed neatly linen

chien - chat

2nd language performance

Repetition X incongruity

cong. < incong.
high <low

late < early

cong. < cat. rel. incong. < incong.

high < low

related < unrelated
related < unrelated
repeated < unrelated

cong. =< rev. anom. < incong.

no effect

babies: less compr. < more compr.

later: young > old

related < unrelated

cong. (|nonrep. - rep.|) <

incong. (|nonrep. - rep.|)

Kutas & Hillyard (1980)
Kutas & Hillyard (1984)
Van Petten & Kutas (1991)

Federmeier & Kutas (1999)

Barber, Vergara, & Carreiras (2004)
Koivisto & Revonsuo (2001)
Koivisto & Revonsuo (2001)

Rugg (1985)

Kuperberg, Sitnikova, Caplan, &
Holcomb (2003), Hoeks et al. (2004)

Hagoort & Brown (2000)

Friedrich & Friederici (2009), Kutas &
Iragui (1998), Atchley et al. (2006)

McLaughlin, Osterhout & Kim (2004)

Besson, Kutas, & van Petten (1992)

Table 1. Overview of simulated effects. cong: congruent; incong.: incongruent; cat. rel.: categorically related; rev. anom.: reversal anomaly; compr.: comprehension;

rep.: repeated; nonrep.: nonrepeated.



Supplementary Table 1

Words (i.e. labels of input units) and their semantic representations (i.e., labels of the

output units by which the conceptsthat thewordsrefer to arerepresented)

Words Semantic representations

Woman person, agent, adult, female, woman

Man person, agent, adult, male, man

Girl person, agent, child, female, girl

Boy person, agent, child, male, boy

Drink action, consume, done with liquids, drink

Eat action, consume, done with foods, eat

Feed action, done to animals, done with food, feed
Fish action, done to fishes, done close to wésdr,
Plant action, done to plants, done with eartanpl
Water action, done to plants, done with watetewa
Play action, done with games, done for fun, play
Wear action, done with clothes, done for warmimgar
Read action, done with letters, perceptual, read
Write action, done with letters, productive, write
Look at action, visual look at

Like action, positive, like

Kitchen location, inside, place to eat, kitchen

Living room location, inside, place for leisureyitig room
Bedroom location, inside, place to sleep, bedroom
Garden location, outside, place for leisure, garde
Lake location, outside, place with animals, lake
Park location, outside, place with animals, park
Balcony location, outside, place to step out, bajco
River location, outside, place with water, river
Backyard location, outside, place behind housekyzad
Veranda location, outside, place in front of howsganda

Breakfast situation, food related, in the mornimgpakfast
Dinner situation, food related, in the eveningyndir
Excursion situation, going somewhere, to enjoyuesion
Afternoon situation, after lunch, day time, aftewzno

Holiday situation, special day, no work, holiday
Sunday situation, free time, to relax, Sunday
Morning situation, early, wake up, morning
Evening situation, late, get tired, evening

Egg consumable, food, white, egg

Toast consumable, food, brown, toast
Cereals consumable, food, healthy, cereals
Soup consumable, food, in bowl, soup

76



Pizza consumable, food, round, pizza

Salad consumable, food, light, salad

Iced tea consumable, drink, from leaves, iced tea
Juice consumable, drink, from fruit, juice
Lemonade consumable, drink, sweet, lemonade
Cacao consumable, drink, with chocolate, cacao
Tea consumable, drink, hot, tea

Coffee consumable, drink, activating, coffee
Chess game, entertaining, strategic, chess

Monopoly game, entertaining, with dice, monopoly
Backgammon game, entertaining, old, backgammon

Jeans garment, to cover body, for legs, jeans

Shirt garment, to cover body, for upper part,tshir

Pajamas garment, to cover body, for night, pajamas

Novel contains language, contains letters, ameho

Email contains language, contains letters, comoation, email

SMS contains language, contains letters, commtiaigashort, SMS
Letter contains language, contains letters, conication, on paper, letter
Paper contains language, contains letters, stiemaper

Newspaper contains language, contains letters;mation, newspaper

Rose can grow, has roots, has petals, red, rose

Daisy can grow, has roots, has petals, yellowsydai

Tulip can grow, has roots, has petals, colottuip

Pine can grow, has roots, has bark, green, pine

Oak can grow, has roots, has bark, tall, oak

Birch can grow, has roots, has bark, white bairchb

Robin can grow, can move, can fly, red, robin

Canary can grow, can move, can fly, yellow, canary

Sparrow can grow, can move, can fly, brown, sparro

Sunfish can grow, can move, can swim, yellow, sinf

Salmon can grow, can move, can swim, red, salmon

Eel can grow, can move, can swim, long, eel

By passive voice (activated together with the dadgect, e.g., ‘by the man’)
Was passive voice (activated together with thévem., ‘was played’)
During/at no output units (activated together vgitination words, e.g., ‘at breakfast’)
In no output units (activated together with logatwords, e.g., ‘in the park’)
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